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Abstract

This note describes the online control software for the CMS CSC Track Finder. It details the core
library which interacts with the hardware through HAL and the CAEN controller driver. On top of
the core library lie several libraries containing generic hardware manipulating functions. These range
from standard board initializations to self tests and pattern injection tests. Wrapping the functions
libraries are the control interfaces; stand alone for local CSC subdetector control and a CSCTF Trigger
Supervisor cell for control coming from the central CMS trigger. This note contains details on the
design of the modules and code examples intended to demonstrate common implementation methods
pertinent to new developers.



1 Introduction to the CSC Track Finder

The CMS CSC Track Finder is described in [1] and its functionality within the CMS level-one trigger in [2] and [3].  
The installation and commissioning of the crate is described in [4] and [5] respectively.

The basic function of the Track Finder is to receive CSC trigger primitives originating from individual CSC chambers 
and to try to extrapolate combinations of them into candidate muon tracks.  Through fast identification of IP pointing 
and high Pt muons, the Track Finder represents the first stage in the pipelined trigger and cuts the raw LHC rate of up to 
40 MHz down to (a tuneable) 10s of KHz.  The L1 candidate muons found by the CSC Track Finder are passed on to 
the Global Muon Trigger (GMT) which serves to combine inputs from all 3 CMS muon subsystems.   The DT (Barrel) 
and CSC (End Cap) Track Finders exchange trigger primitives coming from the overlap region in their respective 
subdetectors.  This allows implementation of functionality to prevent a reduction in trigger efficiency at the end cap - 
barrel boundaries.  The task of receiving CSC trigger primitives and ranking potential muon tracks must be done within 
a strict latency budget of around half a microsecond.
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Figure 1.  An overview of the CSC Track Finder within the CMS L1 Trigger Path.

The CSC Track Finder consists of a single crate containing 16 9U boards.  The guts of the work is done by twelve 
Sector Processor (SP) boards.  Each of the SPs receives CSC trigger primitives from chambers in a single End Cap, 
within a region subtended by a 60o slice in phi and produces up to 3 corresponding candidate muon tracks per 25 nS 
bunch crossing.  Six of the SPs cover one CSC End Cap and 6 cover the other.  All twelve of the SPs pass their 
candidate muon tracks on to the single Muon Sorter (MS) board.  The MS then filters the (up to 36) incoming candidate 
tracks down to a maximum of 4 candidates per bunch crossing and passes these on to the GMT which resides in the 
Global Trigger (GT) crate.   The other boards in the crate are the Clock and Control board (CCB); a generic CSC board 
for distributing the TTC clock and fast commands over the backplanes of CSC crates, the Device Dependent Unit 
(DDU) which is responsible for collating the trigger data and passing it on to global DAQ via SLINK and CSC local 
DAQ via optical fiber and the CAEN VME controller card through which one is able to address the other boards.
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2 Overview of the Track Finder control software

The Track Finder control software described in this note refers to that used to control the Sector Processors (SP),  the 
Muon Sorter (MS) and the Clock and Control board (CCB).  The Device Dependent Unit (DDU) used to stream trigger 
data to DAQ is controlled through the same CAEN VME controller[12] but by the CSC FED Software package which 
is not described here.

The control software package is mostly written C++ and is compiled within and dependent upon the XDAQ[11] 
framework.  The code itself is stored in the CERN CMS TriDAS CVS[9] repository.   The path to the base directory is 
TriDAS/trigger/csctf.  The platform is CERN Scientific Linux[14] and the package, framework, machine and 
architecture supports multithreaded core machines.1 

The control software is expected to be used in 2 basic modes; firstly within the CMS trigger architecture during CMS 
and CSC running of the main Track Finder Crate, and secondly standalone, on potentially non-standard test beds.  The 
basic structure of the package is split in to 3 levels;

The base level refers to a single dynamically bound library that is responsible for linking to the proprietary CAEN[12] 
and SBS[13] VME drivers via the XDAQ package HAL.  The most fundamental object is the SPobject which can be 
used to make reads and writes to registers in FPGAs on a given board.  It is intended that one SPobject should be 
instantiated for each board with which there is to be communication.  The package exports an interface which includes a 
factory method for instantiating and initializing SPobjects as well as a class to register and manage all of the SPobjects 
corresponding to the 14 boards in a single container object.  

The functions library level refers to a set of libraries that contain standard functions and manipulations pertinent to the 
various boards.  These range from basic initialization to Lookup Table loading and test pattern injection.  Typically one 
passes a pointer to an SPobject to a function in the functions libraries and the function then makes a series of writes and 
reads to the board via the pointer.  The functions libraries all include interfaces that can be implemented from any 
framework or standalone code as well as a directory of standalone test executables directly exporting the most 
important functions of the library.

The last tier of the control software is the Trigger Supervisor[15] package.  The CSC Track Finder Trigger Supervisor 
Cell is the link between the CMS Trigger Supervisor Central Cell and the Track Finder base and functions libraries.  
CMS Run Control[17] parses messages to the Trigger Supervisor Central Cell which then relays them to the trigger 
subsystem local cells via SOAP[16].  The cells respond to the commands and then return a SOAP message back up the 
chain.  The Trigger Supervisor group provide the class templates for the subsystem cells and then the subsystem 
developers implement the appropriate code within the local cells to make their hardware perform in the required 
manner.  The local cell further provides a web based interface allowing the commands that would come from the central 
cell during CMS running to be replicated during local CSC running. 
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Base Interactions; 

The Base layer of the control software which talks to the crate and provides read/write 

functionality to access the boards. 

Library contains: 

•!Links to VME module drivers allowing communication with the electronics. 

•!Holds objects related to boards that know about registers, firmware versions, location and 

identity of the board. 

•!Exposes methods allowing reads & writes to the boards in various modes. 

Functions Libraries; 

User level libraries containing the most popular manipulations applied to the electronics.   These 

take the basic board objects exported from the base libraries and use them to perform aggregate 

operations. 

Libraries Contain; 

•!Initializations, configurations. 

•!Tests, checks and validations. 

•!Access to LUT & firmware loading and manipulation functions.  

CSC Track Finder Trigger Supervisor Cell; 

Communicates with CMS run control (via the Central Cell) and so serves to parse central 

instructions to the Track Finder Control Software.   

Library Contains; 

•!Interaction via SOAP to central CMS control. 

•!A GUI for local user control of the Hardware. 

•!A framework for interaction with the configurations and conditions databases. 

VME Interaction with Hardware 

SOAP communication with 

higher CMS control 

Figure 2.  The 3 basic tiers of Track Finder Control Software

The exact configurations to be loaded in to the hardware are stored in a set of Oracle[18] object relational 
‘configuration’ databases.  The Trigger Supervisor Central Cell parses a key to the local Track Finder Cell which then 
queries the database for the corresponding settings to be loaded to the hardware.  The local cell is similarly a conduit for 
the conditions (slow controls) data read from the hardware and sent on to a ‘conditions’ Oracle database.  The 
electronics is typically queried periodically with a configurable frequency of the order of tens of seconds to minutes. 
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Figure 3.  The Flow Diagram for a Standard Trigger Configuration.  

Figure 3 demonstrates the basic configuration sequence.  The configuration command, in the form of a SOAP message 
containing a configuration key,  is initiated by either Central CMS Control (global running), the CSC Supervisor (local 
running) or the web based GUI(Track Finder stand alone tests). The SOAP command is received by the Track Finder 
Control PC and the key is decoded.  The Track Finder Software receives the key, queries the configurations database for 
the corresponding electronics register settings and then writes them in to the hardware.   Various checks are performed 
on the success of the configuration sequence and a response with the result is parsed back up the chain to the progenitor.  
The electronics is periodically pulsed for its current state and the results are filled in to the conditions database.

During compilation, one must follow the order of first compiling XDAQ and the VME interface drivers, then next the 
SPBaseInteractions library which depends on various XDAQ packages.  After that, one may compile the functions 
packages detailed in Section 3.3 onwards, which depend on the SPBaseInteractions objects.  Finally one may compile 
the Trigger Supervisor cell described in Section 4 which has dependencies ranging across all of the CSCTF software.  
An example compiling process is described in Appendix 3.
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3 Introduction to the packages & principal software objects

3.1 Structural Overview

The code itself resides in the CSC Track Finder directory in the CMS software TriDAS tree.   Specifically the base 
directory is TriDAS/trigger/csctf.  If the Track Finder environment is correctly set up then an environmental variable, 
$CSCTF,  will point to the csctf base directory.  Inside /csctf/ are several base packages which are described in this 
section.  Each of the subdirectories follows a similar layout structure.  Source code is inside /src/ directories with 
corresponding header files in /include/ directories.  One can compile the source code in a package through the Buildfile 
in the base directory.  Running it causes a shared object library (.so) to be compiled and placed in the /lib/ directory.  
Code to wrap and implement the package member functions lives in /test/ directories along with a makefile which will 
produce compiled executables in the /bin/ directory.  

Code is archived using CERN Concurrent Version System (CVS) [9].  CVS provides a repository where code can 
undergo structured release.  The code is accessible via a browser to the CVS repository linked from [9].  Automatic 
pseudo-UML documentation of the code is done through DOXYGEN[10].  DOXYGEN is simple to re-run on each 
significant new code release and provides systematic description of the code functionality and structure.  The 
DOXYGEN script along with an instructional readMe.txt resides in csctf/doxygen/.  Output of the automatic 
documentation is linked from the group website [10]

3.2 SPBaseInteractions

The SPBaseInteractions package builds the library that contains the core software objects responsible for direct 
communication with the Track Finder Crate.  The objects contained within it depend only on libraries available through 
XDAQ[11] and as such is the first of the CSCTF packages to be compiled.  Most of the other CSCTF packages make 
use of and depend upon the core objects supplied.

The object central to CSCTF software is the ‘SPobject’.  One SPobject is instantiated for each electronics board (12 
SPs, a CCB and a MS) and it allows the user to directly read and write registers on that board.  Contained within the 
SPobject is the map of registers translating to given base address offsets, the firmware dates of the corresponding board 
and the VME bus adapter through which the crate is accessed.  The SPobject itself is actually a composite object 
containing objects for each of the FPGAs and it is technically these objects that allow reads and writes to the boards.

Typically users get hold of SPobjects through use of an ‘SPObjectParser’ object.  This is a class which exists to generate 
SPObject pointers as the user demands them.  It contains sensible defaults for parameters such as the register base 
address offset map, the VME bus adapter and the expected firmware dates for the various boards.  As the 
SPObjectParser instantiates a new SPobject,  it makes several basic communication, clock lock and firmware date 
checks before parsing the requested object to the user.

Users interacting with a whole crate of TF Boards rather than just a single one at a time should use a 
‘TFCrateContainer’ object to construct and store their SPobjects.  This container object allows the user to hold a single 
pointer through which they can access all of their boards.  It incorporates several instantiation modes depending on the 
level of automation, detection and sensitivity to errors the user requires as it constructs an interface to all the boards in 
the crate.

It is important to note that one actually deals in pointers to SPobjects.  SPobject* is what is returned to the user via the 
SPobjectParser or the TFCrateContainer and is what is expected as an argument by the functions libraries.   Copying 
(and hence parsing)  SPobjects by value or by assignment is actually prohibited by the mechanism of inheritance of the 
class SPBaseInteractions/include/unCopyable.2   Similar is true for the FPGAObject, SPObjectParser and 
TFCrateContainer objects.
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TFCrateContainer 

Top level User interface and container for board objects.   

Holds (and registers); 

•! SPobjects 

•!VMEDevice 

•!broadcast object 

Methods; 

•!Detect, fill, delete board objects using SPObjectParser to 

create them in a given mode. 

•!Has knowledge of SPObject instantiation mode. 

•!Methods to return boards by slot, FED-ID, SP Number 

and to convert between nomenclature types. 

FPGA Object 

Directly interacts with the board through reads and writes. 

Methods; 

•!Read/write register 

•!Block transfer read/write register 

SPObjectParser 

Class to instantiate SPObjects.  Creation process can 

involve checks on board communication and firmware 

version depending on the mode. 

Methods; 

•!Create SPObject (slot 30 returns broadcast device) 

•!Create VMEDevice 

•!Create TTCVI object 

SPobject 

Object representing an electronics board.  

Holds:  

•!FPGA objects corresponding to the board  

•!Firmware dates and knowledge of which board it is.  

•!XML register address table 

•!Board base address offset 

•!VME Bus Adapter 

Methods; 

Access FPGA objects for read/writes to registers 

Return Attributes as needed. 

User Interface:: 

// create a TFCrate container and have it fill itself with SPObjects for each SP 

that is detected. 

TFCrateContainer* TFC_ = new TFCrateContainer(“detect”); 

// write 0x100 to register CSR_FCC in the VME chip of SP 5. 

TFC_ -> getSPbySPNum(5) -> getFPGA(“VM”) -> write(“CSR_FCC”,”MA”,

0x100);  

Figure 4.  A diagram of the basic interactions of the base library classes and the way in which one makes a simple write 
to a Sector Processor.

Upon instantiation, one can parse one of several initialization modes to the TFCrateContainer or SPObjectParser which 
will then dictate the settings with which the SPobjects are built.  The SPobjects can be queried for the mode setting with 
which they were constructed.  If one does not parse a mode then the default mode is used.  Table 1, below, gives an 
explanation of the various modes of instantiation.

Table 1.  The modes in which the base objects can be instantiated.  If no mode is parsed then default is used.

Mode Appropriate object Translation

no arg () TrackFinderCrateContainer This is the same as parsing full.

empty TrackFinderCrateContainer No boards filled, an empty container is returned.

full TrackFinderCrateContainer All boards will be filled in to the container.

detect TrackFinderCrateContainer All boards that respond to a handshake will be instantiated.  Those 
that do not will be ignored.

dummy TrackFinderCrateContainer or 
SPObjectParser

All boards filled but instantiation using dummy bus adapters.  This 
means no actual hardware access takes place.  It allows software to 
be tested independently of the hardware. 

debug TrackFinderCrateContainer or 
SPObjectParser

All warnings and errors during instantiation are displayed but 
ignored.  Use with caution.
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Mode Appropriate object Translation

SBS SPObjectParser SPobjects are built using an SBS bus adapter appropriate to an SBS 
VME controller.  See Appendix 4.

Further details on re-implementing an SBS bus adapter are given in Appendix 4.

Example code showing how to instantiate the basic objects and then use them to perform Track Finder tasks using the 
functions libraries is given in Appendix 1.

The SPBaseInteractions package also contains classes called FWChecks and utilities.   Although neither of these 
represent functionality related to interaction with the hardware, they are depended on by classes that do and hence they 
need to be in the first of the compiled libraries.  Both are exported outside the library and have functions that can be 
implemented at any level in the code hierarchy.  FWChecks deals with reading, interpretation and verification of 
firmware versions loaded to boards in the Track Finder Crate.  It is automatically used for verification purposes as 
SPobjects are built and can be called for immediate reads interactively through the SPFunctions/test/
readCrate_FWnConfig.exe executable.  The utilities class is just that,  it is a variety pack of C++ functions that are 
called regularly from all over the online software packages.  It includes functions related to file stream manipulations, 
generate auto time stamps and do various STL and generic data type manipulations.  

3.3  Basic board functions; the SPFunctions package

The SPFunctions library contains common functions applied to the Track Finder Crate boards.  

The CCB, MS and MPC have appropriately named classes which contain standard functions specific to that board.  
These functions range from basic configurations to gets and sets of board parameters and modes, test pattern injections 
and validating read outs. 

The rest of the classes pertain to SP functionality.   On the whole, the names give away the area of functionality.  Classes 
exist to configure the SP from scratch and to change the trigger mode.  There is a class for getting and setting the 
various timings and one for reading and testing the FMM STTS responses.   There are classes to perform manipulations 
on LUTs and to work out the real world meaning of the ETA window settings.  There is a class to look after the 
“monitorable” items in the Track Finder which involve all of the slow control readings.  There is a command parser 
allowing streams of commands to be sent to the crate boards and a couple of miscellaneous function classes containing 
methods to make injections of files of data in to the hardware, corresponding methods for data read out over VME and 
artificial triggers.  

The methods contained in these classes are explained briefly in this subsection but for a more full understanding one 
should refer to the interface files and the automatic documentation.

3.3.1  Classes for the CCB, the MS and the MPC

For these 3 boards, the production was RICE University and the functions were designed and implemented by M. 
Mateveev.  The code in the classes in the SPFunctions package is simply an implementation of the instructions provided 
in the board user manuals linked from [8].

CCBfunctions;  This class contains functions related to the Clock and Control Board (CCB).  The first 2 functions are  
CCB01Enable and CCB04Enable.  These are simply functions that configure the CCB (pre production 2001 version 
and production “2004” version) in to default run mode.  Most of the rest of the functions in this class refer to 
interactions with the TTC-RX chip mounted on the TTC-RQ mezzanine board.  This chip implements a coarse (25 ns) 
and fine (2 ns) additive delay to the input of the TTC signals to the chip and hence also to the crate to which the signals 
are distributed.   These delays are set so as to normalize the TTC distribution to all of the Peripheral Crates.   For the case 
of the Track Finder Crate,  adjustment of the TTC-RX delay would serve to offset the Track Finder with respect to the 
rest of the system.  As of November 2008, no RX tuning at the Track Finder had taken place.

MPCfunctions;  This class has functions related to the Muon Port Card.  The Track Finder Crate does not implement a 
MPC as standard but it does have a test slot where one can be inserted for intra-crate trigger link testing.  This class 
provides functions for standard MPC initialization and reading of basic attributes such as firmware.  It also provides a 
handle to switch in to “sorter mode” where one can uniquely pipe the output from a given TMB to given MPC links.  
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Lastly there are functions allowing loading of test patterns in to the MPC memory for subsequent injection in to the 
trigger path.

msConfigs;  This is the class relating to Muon Sorter (MS) functions.  The functions in this class are almost all direct 
translations of the MS User Manual [8].  They include basic configuration with standard loading of the LUT, access to 
the Digital Clock Managers, simple self-tests and several more complex pattern reception and injection trigger chain 
tests.

3.3.2  Classes relating to SP functionality

The rest of the classes contained in SPFunctions relate to Sector Processor (SP) functions.

monitorables;  This class contains functions related to the SP “monitorable items” or slow control readout.   The crate is 
typically pulsed every minute or so and basic counters and statuses are read out to be written to the conditions database 
and displayed on a monitoring panel.  The functions in this class provide interfaces to the various counters and status 
indicators allowing the return of values currently in the hardware.

sTTS_states; This class allows direct setting and read back of all of the SP Synchronous Trigger Throttling States 
(STTS) as well as functions to scroll through the states.  These functions are implemented during tests of the STTS 
system and the corresponding Track Finder connections to the Fast Merger Module (FMM).  Further details on ths 
interface are found in the Track Finder Installation document in  [4].

trigModes;  This class allows direct setting of the basic trigger modes of the SP.  It includes several “singles” trigger 
options on a station by station basis as well as more standard coincidence mode settings.

timings;  This class allows direct setting and read back of the SP Alignment FIFO and Pipeline FIFO delay timings.  
There are also functions which can be used to calculate the optimized settings.3 

initialConfigurations;  This class contains functions for stand alone configuring SPs by hand.  There are various modes 
and settings with which one can initialize a SP and they are conveyed through the function nomenclature.  There are 
also methods allowing parsing of a given configuration key or indeed the return of the currently loaded one.

commandParser;  This class allows direct parsing of files full of configurations to the SP.

miscSPfunctions;  This class contains miscellaneous functions applicable to the SP.  Functions include a method to set 
up fake triggers and tracks, one to read out the contents of the DAQ FIFO and one to dump a stream of data over VME.

SPYFIFOFunctions;  This class contains functions related to injection and read out of SP pattern data.  One can upload 
custom patterns to the board to be injected into the trigger stream at a given point as well as reading out data as it passes 
through the chain.

rawDataUtils;  This is a class that contains functions used to manipulate and crate pattern data files compatible with 
those injected at various points in the SP path.   There are functions to read files in and write them out, read in LUTs and 
convert data that goes through them or reconstruct data that has been through them in reverse.  Other patterns such as 
walking ones, walking zeroes can be selected and written to local files.  The class contains a “main” function in which it 
is thought the user would implement their own system of calls and data manipulations.

registerSettings; This is a simple class to convert real world eta values to and from Track Finder eta cut values.  It 
facilitates the construction of eta window keys used in Track Finder configuration.

3.3.3  Test Executables for SPFunctions

The test directory of the SPFunctions package contains short pieces of code that wrap functions found in the source 
code into useful executable functions.  The functions can be executed as is but are deliberately written so as to make the 
process as transparent as possible to the user who may wish to modify them for his own means.  They represent a rapid 
stand-alone method of accessing the hardware bypassing any run control or trigger supervisor implementation.
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The executables in the SPFunctions package that start with readCrate_ are all designed so that they can be run while 
the crate is actively running and triggering without interfering.   They do not alter any settings and typically serve only 
to read out some stored information from the crate.

readCrate_FWnConfig.exe;  This is an executable that will read out the firmware dates of all of the Track Finder chips 
as well as the configuration key date string of all of the SPs.  The core objects are built in “debug” mode so the process 
is robust against incorrect firmware, lack of clock and bad configuration as far as possible.

readCrate_QPLL.exe;  This executable returns the lock status for the SP QPLLs and the CCB.  Typically if any of them 
are unlocked then there is a distribution problem with the TTC 40.08 MHz clock that will have to be resolved before 
much meaningful work can be done with the Track Finder Crate. 

readCrate_AF.exe;  This program returns information about the Alignment FIFO delay settings for each of the SP and 
the word count in the Alignment FIFO elastic buffer for each trigger link from the last resync.   The output is a table 
where the columns represent Sector Processors and as one reads down one sees information about the board and then 
about each trigger link in order.  There is a vector of output before the table that corresponds to the Alignment FIFO 
delay setting minus the word count divided by 2.   This is a popular set of numbers to plot against fiber length.  See [4] 
and [5] for more details on the Alignment FIFO elastic buffer and trigger link synchronization using the resync.

readCrate_rates.exe;  This executable read out the rate of the incoming trigger primitives on each of the trigger links, 
the track rate of each SP and the overall crate trigger request rate.  The time base with which the reads from the 
electronics are made and the data is updated defaults at every 5 seconds but this is configurable via an optional parsed 
argument.   The output is in terms of a table with a time stamp.  The executable can be run in a session window for a live 
read out of the current rate or piped to a file to form a rate history log.

readCrate_triggerLinkIDs.exe;  An executable to read out the link IDs and muon number associated with each trigger 
link.   The MPC carries a “peripheral crate ID” unique to each peripheral crate.  This, along with the “Muon Link 
Number” (1,2 or 3) is transmitted over the optical fiber on each resync.  This gives a unique identifier to each incoming 
trigger fiber that can be checked against the expected values and hence allow reporting of mis-mapped fibers.  The 
output of this program is a map of the trigger fibers and a report of the incorrectly fibered links (as well as a suggestion 
as to how to fix the problem).  This program should be run after any fibering work.  There are more details on the fiber 
mapping in [5].

readCrate_ValPats.exe;  This is a simple executable to read out the current values for the the valid pattern counter on 
each of the trigger links.  This counter simply counts primitives as they come to the SP from the peripheral crates.  The 
functionality here is much repeated in the more complex readCrate_rates which gives a rate rather than the simple 
instantaneous count.

readDAQFIFO.exe;  This is a simple bit of code that reads out the data stored in the DAQ FIFO.  One can can parse 
optional arguments of the SP slot number and desired output file name otherwise defaults are used.  The output is an 
ascii file containing a dump of the raw data in hexadecimal format.  A second file is written out containing any link 
errors.  It is important to note that the DAQ FIFO receives data each time there is a trigger.  Once it is full then it stops 
taking any new data.  It is for this reason that it is often prudent to run the readDAQFIFO  program once to clear the 
FIFO, let it fill and then run it again to take the data.  If the file names are the same then the old one is simply 
overwritten.  The raw data can be unpacked using the tools in the rootUnpackSPDAQ  package described in 3.7.  If one 
wants to continuously read data over VME then one uses the next executable; takeVMEData.

takeVMEData.exe;  This executable is similar to the one above except that it will dump VME data continuously (or for 
a specified number of reads).   One can parse optional arguments of SP slot number and output file name otherwise 
defaults are used.  One can further configure the number of reads (or set “continuous” mode) and the pause between 
each read,  which should be tuned to the trigger rate.  Configuration of these last 2 is done by direct editing of the first 
few lines of the code in /test/

readSPYFIFO.exe; This executable dumps out files containing all of the data that is loaded into the SP SPY FIFOs.  Be 
aware that there are almost 40 FIFOs and so there are a corresponding number of files that are written out. 

test_TFCrateContainer.exe;  This executable is intended to demonstrate the various modes in which a 
TFCrateContainer can be instantiated (see Table 1).  The code inside is an example of the most simple process needed 
to build the container.

test_sTTS_states.exe; This code is intended to demonstrate the sTTS based tests that can be applied to an SP using the 
sTTS_states class.  One can parse the chosen SP by SP number (1-12) directly or set it interactively.

test_monitorables.exe;  The code represents and example showing how to use an SPObjectParser to get hold of an 
SPobject* and then use it to read out a subset of the “monitorable items” status and counter information from the 
corresponding Sector Processor board.
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test_CCB_TTCRX.exe;  This executable is an example of how to use the member functions in the CCBfunctions class to 
read and write the registers in the TTC-RX chip.   Specifically reading back of the unique chip ID and the getting and 
setting of the coarse and fine delays is shown.  The TTC-RX chip is mounted on the TTC-RQ daughter board attached 
to the front face of the CCB at the point where the TTC fiber connects to it.  It is possible to configure delays for the 
incoming clock and fast commands using these registers.  More details are in the CCB manual linked from [8] and the 
TTC-RQ manual in [20].

PRBS_test.exe;  This executable will put all of the SPs in the Track Finder Crate into PRBS4 mode.  It will reset the 
error counters and then repeatedly read out an error rate and total count for each of the trigger links,  appending a system 
time stamp to each read.  The output should be piped to a file.   The regularity with which one makes the reads is set to 1 
minute by default but can be modified by parsing an integer value in seconds.  Typically one would set the MPCs into 
PRBS mode first (MPC register CSR0[8]) and then run this executable, piping the output to a log file.  If one intends to 
run this for long periods then it is worth running using unix screen or nohup commands so that the process runs 
uninterrupted on a local session.

injectSPYData.exe;  This short piece of code wraps the SPYFIFOFunctions::injectSPYdata function.  It allows you to 
upload files of data to each of the front FPGAs on an SP and then inject that data into the trigger path on reception of a 
specific BGo.  The paths to the pattern files to be loaded and injected and the slot number of the SP are coded in the 
injectSPYData.cpp file.   It is expected that the user would edit this file with their own specifics and then recompile.  
The patterns are in the standard form of 2 16-bit ascii frames per bunch crossing, the format of which is described by 
the DAT_TF register in the SP manual [8].  One can fill the files with up to 512 bunch crossings worth of data (1024 
lines).  This function can be used to validate the patterns as they pass through the SP Track Finding logic, from the SP to 
the GMT and from the SP to the DTTF making this one of the most powerful tools in the commissioning armory.

injectMPC2SP.exe;  This code injects a user specified file of data from an MPC in slot 5 of the Track Finder Crate to a 
Sector Processor chosen by the user  and then reads out the contents of the SP SPY FIFOs.  The code is an example of 
an executable that wraps several of the SPFunctions classes.  It uses an SPObjectParser from the base interactions 
library to construct the board objects needed.  The user can either parse the SP slot number and the full path to the data 
file (in that order) or can type them in interactively.

init_MS.exe;  This code contains snippets to run the functions exported by the Muon Sorter Test code which are 
described in the MS user guide liked from [8].  Several MS functions are wrapped, including simple initialization and 
self tests as well as more complex preocedures such as MS to GMT and SP to MS data injection routines.  All are 
enabled by default along with sensible relevant settings but it is very much foreseen that the user will open up the 
init_MS.cpp file and configure it to their needs before recompiling. 

init_CCB.exe;  This is a stand alone executable to initialize the Track Finder Crate CCB following the instructions set 
out in 1.1 of the User Guide[8].

initTTCVi.exe;  This is a standalone executable to initialize a TTCVi5 board in slot 3.

findRegisterSettings.exe;  This is a simple stand alone executable that wraps the registerSettings class.  Through 
following the user interface, one inputs real world eta or eta window cut values and is returned values corresponding to 
settings applicable to the Sector Processor “DAT_ETA” eta scale.

initSPforRealData.exe, initSPTightWindows.exe, and initSPforME11EtaOnly.exe;  These are executables that wrap stand 
alone SP configuration functions in the initialConfigurations class.  The difference is typically the setting of the 
DAT_ETA cuts which are applied in line with the executable name.  These executables come with the warning that they 
are fairly old and the user is expected to modify parameters such as SP slot number by hand.

initSPforMPCtest.exe;  This is a simple wrapper to the initialConfigurations class and serves to put the SP in a mode 
whereby it is ready to receive MPC test patterns.

calc_PFD.exe; This executable wraps the timings class and allows calculation and manipulation of SP Pipeline FIFO 
delay settings.
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5 The TTC-Vi was a predecessor to the TTC-Ci.  It was replaced for Track Finder usage during 2006.  The nice feature of the TTC-
VI/VX combination as opposed to the modern CI/EX was that one could talk directly to the registers using code similar to that shown 
here.  The modern modules require the TTC software as an interface.



main.cpp and corresponding main.exe; This is a piece of example code.  It shows inclusion of most of the SPFunctions 
classes, the standard way to get hold of board objects and how to use the 2 together to manipulate the electronics.  It is 
intended that the user would use customize this executable template to their own purposes.

shootSPL1As.exe;  This function allows the user to artificially create SP tracks (and hence potentially L1 trigger 
requests), SP level-1 accepts (as if the GT had sent a trigger) or a combination of both.  The user is queried for SP 
number, the number of requests to make and the type of requests.   This is probably that fastest way to set the SPs into a 
mode where they generate triggers and it was heavily used in the commissioning of the trigger chain.

runRawDataUtils.exe;  This executable simply calls rawDataUtils::main().  The rawDataUtils class is one that contains 
many varied functions that allow the manipulation and creating of raw data patterns.  It was thought that in this 
exceptional case, the user would probably like to edit their project directly in a member function of the class,  “main”.  
One would edit the source code file, recompile the SPFunctions package and then run the functions from the test 
directory using this simple function wrapper.  

parseCommandFile.exe;  This executable is an example of how one can get hold of an SPobject* and parse a whole file 
containing a command sequence to it.  This is a very simple and effective way of manipulating the hardware by hand.  
One has a file of commands open, one edits it,  parses it to the hardware using the command parser, edits the file, re 
parses it etc.  Inside the code block of parseCommandFile.cpp there is a commented out section that if enabled would 
demonstrate a way of directly passing a sequence of commands from a C char string.

3.4 Lookup Tables and Firmware; SPLUTsAndFirmWare Package

3.4.1 Lookup Tables

This package deals with loading Lookup Tables (LUTs) to the SPs and firmware to the SPs, the Muon Sorter and the 
Clock and Control Board via VME6.  

Functions for SP lookup table manipulations are all contained within a single class; loadLUTs.  Its header file is in 
SPLUTsAndFirmware/include/loadLUTs.h.  This class provides functionality for loading LUTs to single chips as well as 
global wrappers for loading all the LUTs to a single SP or to the whole crate.  It enables switching between binary and 
ascii mode for LUT file input and output and switches between VME block transfer and single writes mode.  The class 
provides diagnostic routines whereby CRC checks can be run on loaded LUTs and the LUTs themselves can be dumped 
to local disk.  The methods form this class are exposed through the dynamic library in the package and are picked up by 
executables in the test directory.    

The most basic LUT loading function is bool loadCrate(TFCrateContainer, pathToLUTFile).   This function takes a 
Track Finder Crate Container object and then attempts to load the LUTs stored in the path pointed to by pathToLUTFile 
to all of the SPobjects instantiated in the TFCrateContainer.  The function returns a bool which is set to true only if 
LUTs were loaded to all SPs and they all passed the CRC check (and the explicit verification of it is enabled).

The loadCrate function wraps a lower level function; loadAllLUTs_SP(SPobject, LUTFilePaths_map).  This function 
loads all of the LUTs to a single SP, a pointer to which is passed to the function along with a string-string map that 
contains local file paths to each of the LUTs of the type shown in the table below.

Table 2.  A table showing the <string, string> map that must be filled with paths to LUTs in order to construct the 
second argument to be passed to the function to load all LUTs to a given SP (loadAllLUTs_SP).

Name of the LUT (std::string).  
The parameters in this column are fixed, you 

must not change them.

Path to that LUT (std::string).  
These you configure depending on where on the local disk 

the appropriate LUTs are found.

localPhiLUT_path Path to the local phi LUT to be loaded to all 5 front FPGAs

DTME1ALUT_path Path to the DT phi LUT to be loaded to front FPGA 1.

DTME1BLUT_path Path to the DT phi LUT to be loaded to front FPGA 2.
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Name of the LUT (std::string).  
The parameters in this column are fixed, you 

must not change them.

Path to that LUT (std::string).  
These you configure depending on where on the local disk 

the appropriate LUTs are found.

GPME1a_path Path to the global phi LUT to be loaded to front FPGA 1.

GPME1b_path Path to the global phi LUT to be loaded to front FPGA 2.

 GPME2_path Path to the global phi LUT to be loaded to front FPGA 3.

GPME3_path Path to the global phi LUT to be loaded to front FPGA 4.

GPME4_path Path to the global phi LUT to be loaded to front FPGA 5.

GEME1a_path Path to the global eta LUT to be loaded to front FPGA 1.

GEME1b_path Path to the global eta LUT to be loaded to front FPGA 2.

 GEME2_path Path to the global eta LUT to be loaded to front FPGA 3.

GEME3_path Path to the global eta LUT to be loaded to front FPGA 4.

GEME4_path Path to the global eta LUT to be loaded to front FPGA 5.

PT_path Path to the Pt LUT to be loaded to the SP chip.

One can also generate a map similar to that above, filled with predicted values for the paths to each of the LUTs based 
upon the path to the LUT file folder and the SP number by running the function <string, string> map 
workOutLUTFilePaths(pathToFolder, SPNumber).

The single SP load function wraps a set of lower level functions of the type bool loadLocalPhi(SPobject, 
pathToLUTFile) which serve to load a given LUT to the appropriate FPGA(s).  These are also exposed publicly and can 
be employed directly by the user.  Further,  there is a set of very similar functions which have _broadcast appended to 
the name.  These functions will simultaneously load the specified LUT to the corresponding FPGAs on all SPs via a 
broadcast to the backplane.  This mode allows all SPs to have LUTs loaded in the time it would usually take to load one 
however one can only choose one set of LUTs.

There are several functions to do with CRC verification of loaded LUTs.  The SP has the functionality to calculate a 
CRC from the currently loaded LUTs and compare the values returned to a set of values uploaded by the user.  It is 
expected that for a standard LUT  load, one would first upload the expected CRC results, then load the LUTs and ask the 
SP to make the comparison.  Upon release of a new set of LUTs (or SP firmware), one would load the new LUTs, ask 
the SP to run the CRC check and then dump out the CRC monitoring data to be uploaded in future use.  The specific 
functions in the loadLUTs class that deal with the CRC verification are shown in the table below.

Table 3.  A table showing the CRC verification related function in loadLUTs.

Function Notes

bool resetCRCMonitoringAndVerificationFIFOs(SPobject) This function resets the counters and FIFOs associated 
with loading monitoring data and running CRC checks.  It  
should be run prior to performing CRC related 
manipulations.

bool loadMonitorData(SPobject, vector<int> 
verificationData)

This function loads data corresponding to the expected 
CRC result.  It is stored in the key each time a new 
configuration is created.

bool runCRCVerification(SPobject) This is the function that actually makes the SP run the 
CRC calculation and  perform the comparison of the 
results against the loaded expected data.
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Function Notes

vector<int> readBackVerificationData(SPobject) This returns a vector corresponding to the verification 
data (result of the CRC check) that is in the SP.

vector<int> readBackMonitoringData(SPobject) This returns a vector corresponding to the monitoring 
data (data loaded as expected result of the CRC check) 
that is in the SP.

More explicit verification of the loaded LUTs can be gained by setting the class switch bool want_ExplicitLUTVerify to 
true.   If this is set then each time a LUT is loaded, all of the data loaded to all of the addresses is read back from the SP 
and explicitly checked against that stored in the file o be loaded.  This is a very slow process and can magnify the LUT 
loading by a factor of around 5 and so the default is that this switch is set to false. 

The switch bool asciiFileMode should be set to true when the LUT files are in ascii format and false when they are in 
binary.  The class will switch automatically and throw a warning if it sees a file with an unexpected extension but on the 
whole it is best practice to set this variable straight after class instantiation time.  The default is ascii mode.

In block transfer mode, the controller buffers up to 128 2-byte writes7 in one go and then blasts them over the backplane 
in a single shot.  It is much faster than single transfer mode but is potentially harder to debug.  The class has a switch to 
turn block transfer mode on and off as bool use_blockTransfer.  The default is true and so block transfer is indeed used 
for normal running.

As with most of the csctf packages, the SPLUTsAndFirmWare/test directory is one that holds executables compiled to 
include the base library and serves to hold examples of how to use some of the library functions.  There are several 
example executables in this one;

crateLoadLUTs:  This executable loads LUTs to the crate, runs a CRC check over them, performs explicit verification 
and then writes out the monitoring data that would be needed to create a key back in to the folder containing the LUTs.  
If one opens up the .cpp file then one can edit the path to the LUT set and see each of the above steps done through a 
member function call.  The calls can be commented in or out as needed.

crateRunCRC:  This code uploads a folder of CRC monitoring data (expected CRC results) to all of the SPs in the crate, 
gets them to run CRCs and then returns the results.  The result will be positive if the LUTs already loaded in to the crate 
match those used originally to write out the monitoring data.  The monitoring data is of the kind (ascii flat files,  one per 
SP) written out by the crateLoadLUTs executable.  The data inside the files is of the type produced by the stream from 
loadLUTs:: readBackMonitoringData(SP*) and in fact it is this function that is employed by the executable above in the 
dumping process.  The user is expected to modify the first few lines of code to specify the location of the monitoring 
data folder.

dumpSPLUTs:  This executable dumps out all 52 LUTs currently loaded in to the memory of a given SP.  This 
executable takes a single argument of SP slot number.

compareLUTs: This executable compares a LUT set that has been dumped out of the hardware using the dumpSTLUTs 
executable above.  The LUTs that are dumped out of the hardware are written in ascii mode by default and this is what 
is expected by this comparison function.  The input in terms of the CMSSW dumped tables is binary since this is the 
CMSSW default.  This executable takes 3 arguments; CMSSW input folder path,  SP dumped LUT folder path and SP 
Number where SP Number is the standard 1-12 format.

replace_PTLUT_modex:  This function takes a Pt-LUT in ascii (dec) format, searches for entries corresponding to a 
given track mode and then replaces them with a specified Pt LUT output entry.  It takes 4 arguments; input Pt table file 
name(ascii,dec), output Pt table file name(ascii, dec), the mode to search and replace (hex), the value to replace them 
with (hex). An example execution would be;

 ./replace_PTLUT_modex.exe L1CSCPtLUT.dat L1CSCPtLUT_replaced.dat 0xf 0xffff 

This would take ‘L1CSCPtLUT.dat’ which is a PT LUT with decimal entries, finds mode 0xf (15) entries and replace 
them all with the value 0xffff (but in decimal i.e.  65535).  The output file would be ‘L1CSCPtLUTreplaced.dat’.  This 
code was used in early running when it was necessary to replace (nonsensical) singles and halo trigger type entries with 
a value that would signify valid Pt in the output to the MS and GMT and hence allow triggers on those modes.
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test_loadLUTs:  This is an example test executable designed to demonstrate several of the loadLUTs methods and the 
correct manner in which to employ them.  It is intended to be extended by the user.

3.4.2 Firmware

For the Sector Processor,  Clock and Control Board and Muon Sorter,  code to upload firmware files to the boards exists 
in the SPLUTsAndFirmWare/bin/LoadFPGAconsole.  For the DDU, one uses the HyperDAQ interface provided by the 
FED software to browse for and upload firmware files.  

An SPobject created in standard mode (see Table 1) will check the date stamps of the loaded firmware in all chips on 
the Sector Processor.  If there is a mismatch between the expected firmware date and the one read then an error will be 
thrown and the SP will not be created.  If one uses debug mode then a warning will simply be thrown and the object 
creation will continue regardless.  The reference for the expected firmware versions is either parsed as part of the 
configurations key read out from the configurations database or in the case of standalone mode is read from the local 
file SPBaseInteractions/firmwareVersions.txt.

Typically new firmware is uploaded on on the advice of the board engineers and experts who will provide a link to the 
new firmware file.  There is a template directory in SPLUTsAndFirmWare/firmware in which firmware files can be 
stored before being uploaded (and some versions are indeed checked in to CVS in this directory) but in principle one 
can upload files from anywhere on the local disk.  The main upload scripts are in SPLUTsAndFirmWare/scripts/ where 
the script names denote the board to which they apply.  Typically, one edits the loading script with the path to the 
correct firmware files and then runs the executable.  Sufficient examples exist inside the scripts for the users to be easily 
able to add in new firmware but the form of the direct call to LoadFPGAConsole is given below nonetheless;

./LoadFPGAConsole -s8 -f1 -o1 -j1 -xAddressTable.xml my_chain1_fw.svf

./LoadFPGAConsole -s8 -f1 -o1 -j0 -xAddressTable.xml my_chain0_fw.svf

This code would load “my_chain1_fw.svf” to the chain 1 chips (Front FPGAs, VME FPGA, DDU FPGA) and 
“my_chain0_fw.svf” to the chain 0 (SP chip) to the SP in slot 8 using the registers defined in “AddressTable.xml”.   If 
one looks inside the loading scripts then it is evident that it is essentially these 2 lines which need to be edited for the 
path to the most recent firmware file.

The method of upload using the VME interface (via the control PC and nfs mounted account software) is using JTAG 
Boundary Scan.  Firmware files to be loaded to the SPs are Serial Vector Format (.svf) and are an open format ascii 
representation of JTAG test patterns.  The SPs take 2 separate .svf files; chain-zero is the firmware loaded to the SP core 
chip and chain-1 contains the commands loaded to the rest of the chips.  The uncompressed file sizes are typically of 
order 8.5 and 14MB respectively but vary a little from release to release.   Code to load firmware to the Muon Sorter 
also exists and in principle the CCB can be programmed using the same boundary scan method.  Each of these boards 
has only a single chain.

It is also possible to load firmware (.mcs files) via a Xilinx Parallel Cable IV directly linked to a Windows laptop 
running the (free) Xilinx software package “Impact” [19] and corresponding 14 pin connectors on the boards.  Further 
detail of loading MS and CCB firmware is given in the user guide linked from [8].

There are further details on both LUTs and firmware in Section 6 in the note referenced from [5].

3.5 SPValidation

The SPValidation library represents a suite of code to debug Sector Processor hardware and firmware.   It is intended 
that each time a new module is produced, an old one is repaired or a new firmware set is uploaded that the basic tests 
would be run before any higher level processes incorporating the module are executed.  For most of the executables in 
SPValidation, one can obtain a listing of the arguments and functionality by parsing a -h argument.

3.5.1 TestSPConsole

The main test executable is SPValidaion/bin/TestSPConsole.  Typically one runs it,  parsing only the slot number 
corresponding to the SP under test.  The user is faced with a menu interface as shown in Figure 4, below.

15



Figure 4.  The TestSPConsole main menu.

Each of the tests themselves broadly maps to a class in the SPValidation source code.  They are described in Table 4, 
below.  Typically the user would simply select option 9 in order to run a Sector Processor through all of the validations. 

Table 4.  The contents of SPValidations/bin/TestSPConsole.exe.

Test Description

1/  Hard Reset Test The SP performs a hard reset, firmware is reloaded to the FPGAs from the EEPROMs and 
the status of each of the chips is pulsed afterwards.  The test is passed if all of the chips 
come back successfully.  During the test, one can see the little LEDs on each of the chips go 
out and then come back on.  If all is well then the chips show green LEDs, if not then red 
ones come on. 

2/ IDTB Test This test validates the Internal Data Transfer Bus (IDTB).  It is the synchronous parallel 
transfer bus that is responsible for communication between the VME FPGA and the other 
FPGAs.  This test uploads patterns of walking 1s and 0s and then tests their transfer 
between FPGAs.  If the patterns are transferred without error then the test is passed.

3/ Clock Test This test reads out the status of the various clock related registers.  There are 2 digital clock 
managers relating to the 2 SP clocking domains and lock status registers corresponding to 
the QPLL daughter board.  If any of these are in a state not compatible with standard 
running then the test is failed.

4/ Chip ID Test The chip ID test really refers to the simple read out of the firmware dates of the SP FPGAs.  
It is a single register read for each one and is a simple test of a handshake with a control & 
status register.

5/ Link Loopback 
Test

The loopback test mode actually offers 2 options; the first to perform a loopback using the 
TLK opto-transceiver only and the second to use an optical fiber to loop the data back.  For 
both cases, patterns are loaded to the user selected front FPGA or DD chips and then 
injected in to the trigger chain to be read out by the spy FIFOs at the VME and SP chips and 
validated.  For the simple “Tlk Loopback”, the path is truly internal to the SP, for the case 
of using a fiber then the patterns are actually transmitted and received by the SP before 
being passed through to the central chip FIFOs.

[csctfts@vmepcS2G18-10 SPValidation]$ bin/TestSPconsole -s21
SPObjectParser --> debug mode; errors will be inhibited.. 
CCB04 f/w date ==05/03/07

Available Validating Procedures for SP2002:
     1) Hard Reset Test
     2) IDTB Test
     3) Clock Test
     4) Chip ID Test
     5) Link Loopback Test
     6) Lookup Table (LUT) Test
     7) Readout Test
     8) Test Front FPGA lines to SP

     9) Perform All Tests

     0) Quit Program
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Test Description

6/ Lookup Table Test This test loads and reads back a set of dummy LUTs of the kind specified by the user.  It 
validates all the address and data bus lines for the LUTs.  The test is passed if the pattern 
read back matches the sample pattern loaded. 

7/ Readout Test This test loads and injects patterns from the front or SP FPGAs to the DD chips data 
recording FIFOs.  The user chooses the chip to be the progenitor and the test is passed if all 
of the patterns are transferred successfully.

8/ Test Front FPGA 
lines to SP

This test examines the lines from the front FPGAs to the main SP FPGA.  A series of 
pattern injections are made at the board front end and are read out from the SP spy FIFOs.

3.5.2 DTLoopBackTest

The executable SPValidation/bin/DTLoopBackTest.exe provides a suite of tests for validating the Drift Tube Transition 
Board modules.   The test essentially involves loading a set of patterns to the SP front FPGAs, injecting them into the 
transition board and then reading back out the pattern.  One has the option of running a purely internal test or actually 
using a SCSI cable to link inputs and outputs of the transition board and then include them in the injection path.  The 
method for connecting the loopback cables and external transfer board is described in Appendix 2 of [5].  The user has 
to tune the loopback latency in terms of the number of clock cycles the loopback path takes.  Options to inject walking 
1s, 0s, random or user defined data exist as well as options to repeat the test continuously allowing stress testing of the 
links.  Automatic detection of old pre-production DT  transition board prototypes and associated register switching exists 
within the code.  An example line used to run the executable is shown below.

./DTLoopBackTest -s6 -c100 -mr -l5 -do -p1

This line would load random patterns (-mr) to front FPGA1, “path 1” (-p1) on the SP in slot 6 (-s6).  They would be 
injected via the external loopback (there is no -i, “internal” argument) and the latency of the loopback path is 5 clock 
cycles (-l5).  The log is written to the screen (-do) and the test is repeated 100 times (-c100).

3.5.3 MPCSPtest

This is a simple executable to load patterns to the MPC and then inject them to the SP where they are read out.  It was 
used as part of the early commissioning of the prototype SPs in 2006.  As such it would require some modification by 
the user to be used on the final stands.  Much of the code is replicated in the SPFunctions library but this is never the 
less a simple well encapsulated test executable and so it still resides in CVS as an option.

3.5.4 SPDDUcomrehensive

This executable automates the loading of test patterns in to the SP and then manages their injection via the optical links 
to the DDU. It probes for possible errors in the DAQ readout path of the Track-Finder crate.  It injects simple test 
patterns to SPs, reads back resulting event records from the DDU and then verifies the structure and content of these 
events. The injection rate can be adjusted by cursor keys while the program is running.

This executable is reasonably old (2006) but the automated readout of the DDU is not replicated in the rest of the Track 
Finder software and so it is left in this package.  The DDU typically now comes under the control of the FED Software 
package.

3.5.5 dumpConf

As the name suggests, this executable serves to dump out pertinent configuration register states for the SP parsed.

3.5.6 SPtester

This is a program to test the entire Sector Processor board logical chain. It injects test patterns (random or walking 1s 
and 0s) to the Front FPGAs on the board, reads back hardware output and then compares it to the SP offline simulation.  
It was used in the commissioning new hardware versions of Mezzanine cards.
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3.6 Stand Alone Executables

The csctf/SPStandAlones area is where code to directly read and write Track Finder Crate registers resides along with 
short scripts wrapping the calls into functional sets.  The main set of functions reside in SPStandAlones/test/
readWriteRegisterFuncts.   These executables are stand alone, there is no separate source code in this package.  These 
read-write-register functions allow the user to directly read from or write to registers one by one and as such are 
assumed to be expert domain only.  There are functions for reading and writing registers in the Sector Processor,  the 
Clock and Control Board, the Muon Sorter and the TTC-Vi.  The functions make use of SPobject* instantiated in 
“debug” mode which means that errors are suppressed as far as possible and are only presented as warnings.  The piece 
of code below shows an example write to an SP.

./readwriteRegister -s7 -rCSR_PFD -cSP -mMA -pW -v0x5

The call above would write (-w) 0x5 (-v0x5) to the CSR_PFD register (-rCSR_PFD) on the SP chip (-cSP) of the SP in 
slot 7 (-s7).  The corresponding way to read back the same register would be;

./readwriteRegister -s7 -rCSR_PFD -cSP -mMA -pR

A full listing of the arguments that one can parse can be obtained by running the executable without arguments.  
Variables such as the bus adapter type and xml register base offset table path are hard coded and so one would need to 
directly edit the code and recompile to change them.

Within the SPStandAlones directory, there are 2 more folders; SPStandAlones/SPScripts and SPStandAlones/
TTCviScripts.  These hold simple scripts that wrap the readwrite register calls to produce small functions in the SP and 
TTC-VI boards respectively.  They are typically old and so any new user could use them as a guiding basis for 
reproducing the function but would be well advised to check each register call one by one.

3.7 Local Unpacking of Data without using CMSSW and a few other useful tools; rootUnpackSPDAQ

The $CSCTF/rootUnpackSPDAQ folder contains a set of GCC compiled executables that are intended as a few 
miscellaneous useful tools.  Included are converters to switch between ascii and binary files and tools to unpack raw 
Track Finder data,  perform a quick analysis and spit out some ROOT[6] plots.  They are not dependent on the usual 
$CSCTF core libraries and as such can be much more easily compiled on various platforms and architectures.  The only 
dependencies come from the data unpacking tools which do need ROOT[6].  If you want to use them then you need 
ROOT installed and working and the root libCore.so in the $LD_LIBRARY_PATH environmental variable list.  In order 
to compile the executables, simply type ./compile.sh to run the compile script.

myBin2Ascii and myAscii2Bin;

Two simple converters exist for conversion of files from ascii to binary and vice versa.   They are myAscii2Bin and 
myBin2Ascii.   Table 5 below shows an example where an ascii LUT in decimal is converted into binary and then back in 
to ascii but in hex format.

Table 5.  An example of the use of the ascii to binary and binary to ascii conversion tools.  One can switch hex and dec 
in the examples as the input or the desired output changes.

commands notes

./myAscii2Bin.exe LocalPhiLUT.dat LocalPhiLUT.bin dec Convert the (decimal format) ascii file 
LocalPhiLUT.dat in to binary file 
LocalPhiLUT.bin

./myBin2Ascii.exe LocalPhiLUT.bin hex > LocalPhiLUT_hex.dat Convert the binary file 
LocalPhiLUT.bin to hex format and 
pipe it to the ascii file 
LocalPhiLUT_hex.dat
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In the course of unpacking raw data by hand, the first step is to transfer the raw binary file in to ascii.  If one is 
intending to use the stand alone unpacking tools in the rootUnpackSPDAQ directory then the data file should be 
unpacked into a hex format.  The code would be of the form;

./myBin2Ascii.exe rawDataFile.bin hex > rawDataFile.dat

stripOutDDUEvent: The next step in the unpacking of data by hand process is to strip out on the data inside the raw file 
that comes from the SPs and ignore that from the DDU.  The process stripOutDDUEvent performs just this task.  One 
simply passes the arguments for (1) the input and (2) the output files with an optional (3) of start event number if it is 
not zero.  The code form would be similar to that given below;

./stripOutDDUEvent.exe rawDataFile.dat rawDataFile_SPonly.dat

makeTree:  Once one has an ascii raw data file in hex format containing only SP data then one can use this local 
unpacker.  One passes a single argument of the path to the raw data file and then the unpacker spits a translation of the 
unpacked bits line by line to the standard out as well as writing a root tree with some of the unpacked data in to the /
temp directory.  If one really wants to do debugging of the raw data line by line by eye then one should pipe the 
standard output to a file otherwise it is best to pipe the output to /dev/null for speed.  It is further worth noting that this 
file contains not only the input raw data but also its unpacked description and hence will be several times larger than the 
original.  One can edit lines in makeTree.cpp to limit the number of events over which the program should run.  
Typically anything over 100000 events with full 7 bx DAQ FIFO settings becomes unmanageable in terms of size both 
standard output and the written root tree8.   The code below shows an example of how one might run the code piping the 
output to a file;

./makeTree rawDataFile_SPonly.dat > unpackedData.txt

An example of the standard output is show in Table 6 below.

Table 6.  An example event of the output of the raw unpacked data.  The lines with ‘-----> 0xabc’ are the lines of 
original data, the text lines under each block then translate selected information.

std out of makeTree for one event notes

-------------------->> read word ::0x9207
-------------------->> read word ::0x9025
-------------------->> read word ::0x9000
-------------------->> read word ::0x9601
-------------------->> read word ::0xa000
-------------------->> read word ::0xab54
-------------------->> read word ::0xa008
-------------------->> read word ::0xa7ff


 
 ---> EventHeader
L1ANumber == 0x25207
L1A_BXN == 0x601

The SP Event Header.  It is characterised by 4 ʻ0x9...ʼ words 
followed by 4 ʻ0xa...ʼ words.  The 2 parameters unpacked are 
ʻL1ANumberʼ which is simply a sequential counter counting 
triggers and the ʻL1A_BXNʼ which is the bunch crossing 
number upon which the trigger arrived.  n.b. A machine ʻorbitʼ 
corresponds to the time it takes a given bunch to travel all the 
way round the LHC, it is about 89 micro seconds.  Within an 
orbit there are 3564 25nS bunch crossings which is what the 
bunch crossing number is counting here.

-------------------->> read word ::0x40ff
-------------------->> read word ::0x5
-------------------->> read word ::0x42de
-------------------->> read word ::0x51a2


 
 ---> Block Counters
Track Counter == 0x2c0ff
Orbit Counter == 0x28d142de

This is a set of counters relating to this event.  The Track 
Counter is an internal SP counter that simply monitors the 
number of tracks formed which the orbit counter is a global 
time counter counting the number of orbits as described in the 
row above.  When one combines orbit and bunch crossing 
numbers, one has a unique reference to a given bunch 
crossing within a lumi segment.
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std out of makeTree for one event notes

...3 empty data block headers stripped out for 
brevity.

The DAQ FIFO is set to a 7 bx wide window.  The SP Pipeline 
FIFO delays are tuned so that a self trigger arrives in the 
central slot.  In this run there were no external triggers and so 
the first 3 bunch crossing slots were empty.  I have removed 
the corresponding empty data block headers.

-------------------->> read word ::0x200
-------------------->> read word ::0xb
-------------------->> read word ::0x0
-------------------->> read word ::0x0
-------------------->> read word ::0x0
-------------------->> read word ::0x200
-------------------->> read word ::0x1ff
-------------------->> read word ::0xff


 
 ---> DataBlockHeader
valid pattern word == 0x200
Valid Quality MB-D == 0x0
Valid Quality MB-A == 0x0
Mode-1 == 0xb
Mode-2 == 0x0
Mode-3 == 0x0
Synch Error word == 0x0

This is the triggered bunch crossing data block header, it tells 
you about the LCTs that came in on this bunch crossing and 
any output tracks that were sent to the MS.  Here the ʻvalid 
pattern wordʼ shows 0x200, this corresponds to a ME LCT 
coming in on the ʻmuon-1ʼ trigger link of ME3.   Had there been 
stubs from the DT Track Finder used as part of a track then 
they would have shown up in the ʻValid quality MBʼ lines.  One 
sees a value of 0xb in the mode 1 signifying that a single track 
was found (first of 3 potential outputs of the SP).  The value 
0xb signifies that it was a track of type ʻtrack mode 11ʼ which 
corresponds to a singles trigger.  Appendix 2 gives the full table 
of modes assigned to various track types.

-------------------->> read word ::0x12b3
-------------------->> read word ::0x3861
-------------------->> read word ::0x255c
-------------------->> read word ::0x20d5


 
 ---> MEDataRecord, bx=3 LINK=a
CLCT_PAT == 0x3
quality == 0xb
wireGP == 0x12
CLCT_PAT_ID == 0x61
cscID == 0x8
L_R_bit == 0x1
BC0 == 0x0
BXN0 == 0x1
ME bx number == 0x55c

The ME-data record describes the incoming LCTs listed in the 
data block header above.  Here we see the description of the 
data contained in the single ME3 LCT listed above.  The CLCT 
pattern type and the quality of the LCT are parameters 
assigned by the TMB.  The wire group number, strip pattern ID 
and CSC (chamber) ID are functions of the chamber and the 
location of the hit within it and are assigned by the on chamber 
electronics.  The ME bunch crossing number is assigned by 
the TMB and in principal should be tuned so that the SP 
assigned bunch crossing number (header word, top row) 
matches that assigned by the TMB.
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std out of makeTree for one event notes

-------------------->> read word ::0xb18
-------------------->> read word ::0x2000
-------------------->> read word ::0x20
-------------------->> read word ::0x0


 
 ---> SPDataRecord, bx=3 
mode=1
Phi == 0x18
sign == 0x0
CHRG == 0x0
ETA == 0xb
Halo == 0x0
del12Phi == 0x0
del23Phi == 0x0
MS_ID == 0x0
MB_ID == 0x0
ME4_ID == 0x0
ME3_ID == 0x1
ME2_ID == 0x0
ME1_ID == 0x0
MB_TBIN == 0x0
ME4_TBIN == 0x0
ME3_TBIN == 0x0
ME2_TBIN == 0x0
ME1_TBIN == 0x0

This is the SP Data Record.  It gives information about the 
track found by the SP.  In this case the track was a singles 
track requiring one LCT only and so values such as the inter-
station phi bend ʻdel12Phiʼ and ʻdel23Phiʼ are not filled.  There 
is a single LCT in the track, it is the ME3 LCT listed above and 
values for eta and phi are filled since even though in this case 
there is no actual inter-station extrapolation, their values can 
be drawn from the LCT itself directly.  The TBIN fields should 
be ones used to signify the timing of the incoming LCTs that 
were used to build the track however this functionality was not 
implemented as of November 2008. 

...3 empty Data Block Headers excluded for brevity. As with the 3 empty Data Block Headers in the 7 bx window 
before the triggered bunch crossing, the 3 after it were also 
blank.

-------------------->> read word ::0xf007
-------------------->> read word ::0xf07f
-------------------->> read word ::0xf088
-------------------->> read word ::0xf630
-------------------->> read word ::0xe00c
-------------------->> read word ::0xeb54
-------------------->> read word ::0xe823
-------------------->> read word ::0xe971


 
 ---> SPEventTrailer

This is the event trailer, signifying the end of this event for this 
SP.  It is characterized by 4 ʻ0xf...ʼ words followed by 4 ʻ0xe...ʼ 
words.

The actual translation of the raw data is given in [7].  It is important that the dictionary classes holding the data 
translation are kept up to date with data format changes coming with SP firmware upgrades if the functionality of the 
local unpacker is to be preserved.

Once the program has run, on top of the std output of the kind shown in the table above, there is also a root file 
containing a single root tree in /temp/SPDAQTree.root.  One can easily browse its contents using a TBrowser within 
ROOT.  In order to add to what is filled in to the tree, one would need to edit the rootTree class files so that new 
variables and corresponding tree branches are added and written out each event.

fastAnal_compiled: This is an executable meant as an example to show one loads the root tree written out by the raw 
data, loops over the events inside it, makes quantitative cuts on the variables inside it and writes out a root tree full of 
filled results histograms.  The user can either use this code as a template to write their own root based analysis or tweak 
the code inside slightly and recompile as necessary.  In order to run the default sample code, one simply types ./
fastAnal_compiled (no arguments).  The code searches for the .root file in the temp directory, loads it and then runs over 
parts of it as specified in the user interface.  Root histograms are written into an output file also stored in the /temp 
directory.

The final tool in the analysis chain is a script to automatically plot the histograms saved in the root file form the 
analysis.  For the plots produced by the fastAnal_compiled.exe executable, the script is show_fastAnalPlots.  This script 
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simply reads in the histograms saved in the file and builds plots on the basis of user configurations that live inside the 
script.

There are 2 other analysis routines that are based around the same principles as the one above.  The executable 
timePlots.exe combined with the root script show_timePlots spits out some plots based around stub timing within the 
trigger data.  The second is a fastAnal.C which when combined with the startMe_fastAnal script will run a quick 
analysis in the Root interpreter CINT.  This is an extremely slow way to do analysis and so absolutely not recommended 
unless one is really debugging single events by hand using ROOT.  The example is nevertheless left for the user.

3.8 TFHyperDAQ

The TFHyperDAQ or “Track Finder HyperDAQ” package is a legacy interface left over from the MTCCII (2006) 
commissioning period.  It uses the XDAQ framework to provide a web page which wraps key functions exported from 
the CSCTF base libraries.  It is essentially a way of gathering together the most important standalone executables in a 
simple user interface.  More information on this interface and details for its use are in the “CSC TrackFinder shift 
Manual”, July 2006, which is linked from the group page in [21]. 
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4 The Trigger Supervisor Package[15]

The trigger supervisor part of the CSCTF online framework resides in TriDAS/trigger/csctf/ts.  This forms the “CSC 
Track Finder Trigger Supervisor Cell” and is responsible for the connection between the Track Finder control software 
(described in this note) and higher level CMS level-1 trigger control.  The code inside /TriDAS/trigger/csctf/ts controls 
the hardware through functionality exported by the packages described in Section 3 and implements a SOAP[16] 
interface with the “Trigger Supervisor Central Cell” located in TriDAS/trigger/ts.  

4.1 MTCCIIConfiguration9; Configuration using the Trigger Supervisor

The function MTCCIIConfiguration::f_configure() is the one that is called by the Trigger Supervisor package when 
Trigger Control wants to configure the hardware.   The class holds a parameter list10  that relates key attributes of the 
configuration process to their chosen settings.  This list essentially forms the set of variables that are inputted to the 
process that configures the hardware.  They can be configured via the SOAP command that is parsed from the Trigger 
Supervisor Central Cell or interactively via the local Cell HyperDAQ interface.  

Table 7.  The list of configurable parameters read in by the configuration process.

Parameter Notes

KEY This is the primary CSCTF configuration key parsed from the Trigger 
Menu.  It is used to decode the secondary keys for each of the SPs using the 
primary configuration database.  The secondary keys are then used on an 
SP by SP basis to query the secondary configuration database for the 
appropriate settings which are then parsed to the hardware.  This is often the 
only parameter to be actively parsed, allowing default values to define the 
others.

Force Configure This is a boolean choice which defines whether the hardware must be 
actively configured or not.  If it is set to false then if all of the SPs already 
return the correct configuration key then no further configuration will be 
performed.  If it is true then each board is actively configured from scratch 
regardless of its current state.  The suggested default for this choice is false 
in order to reduce unneeded configuration process.

want_MultiThread If this boolean choice is set to true then the main CPU thread will fork off 
12 child threads, one for each of the SPs.  Each thread is responsible for the 
configuration of a single board.  The main thread registers and waits upon 
the exit of the child processes.  This choice speeds up full crate 
configuration by a factor of about 3.  It is recommended that the default is 
set to true.

want_HardCoreLUTAddressCheck This choice allows the process that loads the LUTs to check all of the data 
values loaded into SP memory after each LUT configuration.  It slows down 
the configuration process significantly but acts as a 100% backup to the 
LUT CRC process.  The suggested default for this mode is false, it is really 
a debug utility.

want_LUT_CRC This boolean switches on and off the ability of the SP to calculate a CRC on 
the recently loaded LUTs.  The process takes about 10-12 seconds per SP to 
validate all of the LUTs by CRC and return a response.  The recommended 
default setting is to enable the CRC.
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Parameter Notes

want_writeOut_KEYContents This setting enables local writing of the contents of the keys read from the 
database as the configuration progresses.  It is a useful debug tool but 
greatly adds to the size of the log file and so the default is false.

want_confiure_CCBnMS The CCB and the MS do not have entries in the configuration key since 
their configuration is invariant and is defined in the users guide.[8].  The 
default option is that the MS and CCB should indeed be configured as part 
of the configuration of the Track Finder Crate and in fact form the first few 
steps of the process.

max_loadAttempts_perSP This integer defines the number of attempts the process makes to load an 
SP that is failing in some way.  During commissioning, the default value 
was set to 5 attempts but one could envisage that this will be reduced to 1 
once the system is in a stable state.

The configuration chain is shown in Figure 3.  Trigger control chooses a specific key with which to configure the CSC 
Track Finder.  This key is parsed to the local cell via within the configuration SOAP message (or the default key is 
used).  The local cell receives this key and then queries11  the primary configuration database.   The primary 
configuration database simply consists of a table that holds secondary configuration keys, one for each of the SPs.  The 
secondary configuration database consists of tables containing data corresponding to SP configuration settings.   These 
data are read in as each SP is configured and are used to parse settings to the SP and then to verify it.

The TrackFinderCrateContainer object that is responsible for holding the SPobject*s used to read and write to and 
from the hardware is contained in the CellContext class and follows the principles of instantiation on demand.  The 
MTCCIIConfiguration class holds pointers to many of the other csctf base functions objects which is what it uses to 
perform the hardware manipulations.  The boards themselves have a register that is devoted to storage of the currently 
loaded configuration key.  If, after all of the optimization steps, it is necessary to write to a SP then the first write is one 
to overwrite the already loaded configuration key stored in the hardware with dummy value 0xffff.  A valid key is then 
only written back into the hardware upon successful completion and verification of the configuration process.

The steps involved in configuring the Track Finder Crate as part of MTCCIIConfiguration are shown in Figure 5, 
below.
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The configurations database is queried with the primary key.  Secondary 

keys for each SP are received. 

The CCB and MS are configured if required 

The configurations database using is queried using secondary keys.  The 

settings for each SP are received and held in memory. 

The variables needed for configuration are read in from the parameter list. 

The key contents are examined to see where it is possible to write the contents 

to all SPs simultaneously.  Where possible, those LUTs are written. 

Each SP is queried for its currently loaded key. If it is already correctly 

configured and Force_Configure is not set then further configuration of the 

SP is skipped. 

Static and timing related configurations are loaded to the SP. 

Eta windows configurations are loaded to the SP. 

LUTs are loaded to the SP.  Verification is performed in line with the settings 

for want_CRC and want_HardCoreLUTAddressCheck. 

Firmware versions are checked against those expected by the key. 

The results of all of the SP configurations are returned as a big AND. 

If multithreading is enabled then one thread per SP is forked off and 

registered with the main thread.  If there is any problem with creating the 

threads then the mode is switched to single thread. 

TrackFinderCrateContainer is instantiated if not already done so. 

Figure 5.  The major steps of the configuration process shown in sequence.

As the configuration process proceeds, the log output, along with appropriate time stamps and timings are written to a 
local configurations log.

There is further discussion on the content of the configuration database, the configuration process and an example key  
used for LHC start up in [5].

4.2 Test Functions Available through the Trigger Supervisor Interface

It is possible to put the Track Finder Crate in almost any desired test mode via the configure function described in 4.1.  
One simply has to set up the key set so that it contains the register settings appropriate for the test and then use the 
configure function to parse the contents of the database to the hardware.  For a few specific tests, however, standard 
functionality from the SPFunctions library has been exported to the Trigger Supervisor interface.  These provide the 
trigger community with a standard set of simple diagnostic tools which can be run to diagnose the L1 trigger without 
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any real input from specific hardware experts.  For the CSC Track Finder, these tests do not use information stored in 
the database although they do often take xdata arguments.

The functionality of the SPFunctions/sTTS class is exported to the Trigger Supervisor Cell.  The user can read or write a 
given sTTS state to a given FED-ID within the Track Finder Crate.  One can also use the scrolling test functions or 
diagnostic global dumps.

The test injection mode from SPFunctions/msConfigs where the MS is configured to inject patterns to the GMT is 
exported.  One can define the set of patterns to be injected or use the defaults and hence once has a rapid automated test 
of the downstream part of the Track Finder trigger path.

4.3 “Monitorable” Items and Online Data Quality Monitoring

The Trigger Supervisor and XDAQ packages provide a framework in which the hardware state can be monitored in real 
time.  The class TriDAS/trigger/csctf/ts/CSCTFDataSource provides an interface through which the XDAQ framework 
can generate periodic requests to the local cell which then uses the CSCTF base libraries to query the hardware for a set 
of counters and status registers.  The information is recorded in a “flash list” which is in essence a centralized store that 
can be queried in real time by multiple users and is also sent on to the conditions database where it is recorded for 
incorporation into offline analysis.   The CSCTFDataSource  class contains the configuration for the periodicity of the 
pulses (currently every 40 s) and the list of items to be read out from the electronics and fed on to the flash list and 
database.

One of the principal users is the L1 Trigger Monitoring application.  This service provides real time graphical 
representation of the status and activity in the L1 trigger.  On top of this, the CSC subdetector has a custom rack of 
machines in SCX[4] that are used for online analysis of CSC local data.   This includes a machine that processes trigger 
data and automatically publishes the results to the web.  Within the CSC community,  these 2 services are colloquially 
known as “global” and “local” DQM respectively.

Further information on the CSCTF Trigger Supervisor Cell and details on using the local interface can be found in a 
“CSCTF Quick Start Guide” which is linked from the general CSCTF resources page[21].  From the same resource on 
can also find links to L1 trigger and CSC DQM web based services.
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5 Exceptions

Exception handling in the csctf online framework is based around the XDAQ xcept/Exception class.  The class used 
to raise exceptions is SPBaseInteractions/include/TFException and it simply inherits from the XDAQ version.  This 
handler provides a standardized way to pass a description of the problem, the module, class and code line producing 
the error as well as a wrapper for the C++ <exception> or <stdexcept> standard exception references.   TFException 
is placed in the SPBaseInteractions package since code for the core objects in here (as well as in the functions 
libraries) depends on it and it is necessary to avoid circular dependencies in shared library compilation.

The code at the core of the SPBaseInteractions library that is responsible for the interaction with the hardware 
drivers is further proofed to handle specific hardware access type exceptions.  The most common are specific 
hardware diagnostic errors thrown by the XDAQ HAL package or the CAEN device driver.  Typically the low level 
error is caught, wrapped with a more descriptive message and then rethrown as a XDAQ exception.  There are no 
catch-all (catch(...)) in the low level code, the emphasis being with relying on the framework to handle the problems.  

Higher level code such as the /test standalone executables does try to replicate some of the exception handling 
functionality of the high level framework and so there are more generic catch statements and exit functions.  These 
never overlap with code that could be implemented within the framework itself.
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Appendix 1.  Code examples showing how to build the SPBaseInteractions objects and perform operations using 
the functional libraries

A.1.1 Example code showing how to get hold of a set of SPobjects using a Track Finder Crate Container object

It is suggested that you open up the SPBaseInteractions/include/TFCrateContainer.h interface file and quickly scan 
through the member functions.

This line makes a new Crate Container object and parsing the “detect” mode fills it with SPobject* corresponding to all 
of the live SPs detected.
TFCrateContainer* TFCC_ = new TFCrateContainer(“detect”);

One can query which boards are filled into the container;
TFCC_ -> listFilledBoards();
or query the instantiation of a specific one;
bool SP6_aliveOrNot = TFCC_ -> isBoardFilled(6);

One can now get hold of an SPobject in a given slot, e.g. SP slot 6;
SPobject* SP_ = TFCC_ -> getSPbySlotNum(6);
by FED-ID;
SPobject* SP_ = TFCC_ -> getSPbyFEDID(890);
or by SP number;
SPobject* SP_ = TFCC_ -> getSPbySPNum(1);
There are also TFCC_ member functions for switching between SP number, SP slot number and FED-ID.

One can alternatively get hold of a “broadcast” device which is an SPobject* that would write (but not read!) to all SPs 
in the crate simultaneously.
SPobject* SP_br_ = TFCC -> getBroadCastObject();
Or get hold of a pointer with which one can talk to the Clock and Control Board or Muon Sorter;
SPobject* CCB_ = TFCC_ -> getCCB();
SPobject* MS_ = TFCC_ -> getMS();
There is even a raw VME device bound to the Muon Sorter for specialist MS applications;
VMEDevice* MS_Device = TFCC_ -> getMS_Device();

A.1.2 Example code showing how to build an SPobject directly

It is recommended that one builds SPobjects using a TrackFinderCrateContainer object as in 2.1 as there are multiple 
checks that are performed as one does it.  It is however possible to use the SPObject parser (the object used by the 
TFCrateContainer) directly or even just set up the constituent parts and then call the SPobject constructor directly.

Using an SPObjectParser to build an SPobject;
SPObjectParser* SPObjectParser_ = new SPObjectParser();// we could have parsed a mode here, see Table 1.
SPobject* SP_ = SPObjectParser_ -> getSPObject(int slotNumber);

Building an SPobject directly (this is the guts of what the SPObjectParser does);
string AddressTable = "AddressTable_SP2002.xml"; //The full path to the xml table containing the register base offsets.
HAL::HALUtilities HALUtil;
unsigned long VMEbase = HALUtil.slot2address(VMEslot);
HAL::VMEAddressTableXMLFileReader addressTableReader(AddressTable.c_str());
HAL::VMEAddressTable addressTable("SP address table", addressTableReader);
BUSADAPTER busAdapter(CAENLinuxBusAdapter::V2718,adapternumber);
SPobject *SP = new SPobject(addressTable, busAdapter, VMEbase);

One can similarly construct raw VME devices for the MS or SP broadcast devices using slot 30 as an input.
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A.1.3 Example code demonstrating how to use the SPobjects 

Once one has obtained an SPobject* (SP_) using one of the methods above, then one can use it to talk to the electronics 
and perform functions.

One can query the SPobject itself for certain attributes of the Sector Processor such as the firmware dates or its own 
name;
SP_ -> FWDate(“DD”);//  Return the firmware date of the DD chip
SP_ -> whoAmI(); // Returns the name of the board (SP1 to SP12, CCB, MS etc.).

One can carry out simple register reads and writes.  The first step is to get hold of the FPGAobject corresponding to the 
chip one wants to talk to.  For the SP, one can interact with the main logic chip on the mezzanine card, “SP”, the VME 
interface chip, “VM”, the trigger data chip, “DD” or one of the 5 front FPGA chips, “F1” to “F5”.  One can also parse 
“FA” which would return a pointer to all front FPGAs.  One could only use the “FA” object to make a write.  
Incorrectly trying to read from “FA” would cause an error. 

Once one has got hold of the FPGAobject then one can make a read from it or a write to it by calling the read or write 
functions.  Both take 2 arguments of register and “muon number”.  The registers are described by the Backplane 
Interfaces document linked from [8].  The Muon Number refers to the case where there are 3 muon lines for some 
registers.  One has the choice to parse “M1” to “M3” or alternatively “MA” representing all lines.  As with “FA”, one 
can make a write to “MA” which would result in the same effect as making 3 individual calls to M1, M2, M3.  Also, as 
with FA, one may not make simultaneous reads from all 3 lines using MA.  This has an exception in that there are not 
necessarily 3 register lines for all registers and in the case of these registers one should use MA both for reading and 
writing.

e.g. make a write of 0x1 to the SP-chip, the CSR_LNK register;
SP_ -> getFPGA(“SP”) -> write(“CSR_LNK”,”MA”, 0x1);  //make a write to register 
make a read from the trigger primitive (“valid pattern”) counter of the 2nd muon (trigger) link of front FPGA 4;
int count = SP_ getFPGA(“F4”) -> read(“DAT_VPC”, “M2”); //make a read from a register.

It is possible to use the higher level functions available from the other base libraries as described in Section 3.  
Typically one constructs a simple class of type corresponding to the required function and then parses the SPobject* to 
it so that it can make a series of reads/writes to the hardware.

e.g. Use the SPFunctions/timings class to run the function (int readAFD_FA(SPobject*)) that returns the AFD value and 
checks that this value is common to all front FPGAs (FA);
timings* timings_ = new timings();
int AFDNumber = timings_ -> readAFD_FA(SP_);//use the timings_ object to run the function.
Of course, if one is using a TFCrateContainer then one can access the SPobject directly in the argument;
int AFDNumber = timings -> readAFD_FA(TFCC_ -> getSPbySPNumber(1));
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Appendix 2 :  Track types by mode table.

This table shows the track mode assigned by the SP core on the basis of the constituent inter station extrapolation(s).  

Table 8.  Track Modes assigned by the SP as a function of the extrapolations.  This table is courtesy of Alex Madorsky 
(University of Florida).
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Mode Rank Track asssemler 

key station 2

Track assembler 

key station 3

Track assembler key 

station 2 to DT

0

1

12 1(1)-2-3 1(1)-2-3

17 1(2)-2-3 1(2)-2-3

1c 1(3)-2-3 1(3)-2-3

1f 1(1)-2-3-4 1(1)-2-3-4

21 1(2)-2-3-4 1(2)-2-3-4

23 1(3)-2-3-4 1(3)-2-3-4

11 1(1)-2---4

16 1(2)-2---4

1b 1(3)-2---4

10 1(1)---3-4

15 1(2)---3-4

1a 1(3)---3-4

5 4      2-3-4      2-3-4

6 1(1)-2 1-2

b 1(2)-2

e 1(3)-2

5 1(1)---3

a 1(2)---3

d 1(3)---3

8 3      2-3      2-3

9 2      2-4

a 1        3-4

b

13 1-2-b1(1)

18 1-2-b1(2)

1d 1-2-b1(3)

d

9   2-b1(1)

c   2-b1(2)

f   2-b1(3)

f halo trigger (since 2007)

bad phi road

7

c

e

no track

unused

unused

2

3

4

6

Explanation: 

Track assembler columns show which extrapolations are used in a track. 

Notation:  

 - numbers 1,2,3,4 mean ME stations 1,2,3,4 

 - b1 means DT station 1 

 - 1(2) means extrapolation quality to station 1 is 2. 

Example: 

if "1(2)-2-3-4" appears in "Track assembler key station 2" column, it means a track 

was built from the following extrapolations: 

 - ME1 to ME2 (quality 2) 

 - ME2 to ME3 

 - ME2 to ME4 



Appendix 3.  Installation of TriDAS/trigger/csctf

This section gives details on the installation of the Track Finder online software.  It is clear that over time dependencies 
and exact paths will vary as the library linking and make file setup change, however, it is nonetheless thought useful to 
include some of the finer details as they really are now (2008) below.

The first step is to set up a linux machine (we use SLC[14]) with XDAQ[11] installed and ensure that there is access to 
the CVS TriDAS repository so that the code can be checked out.

edit .bashrc so as to include the lines:
source /home/<mypath...>/TriDAS/trigger/ts/toolbox/scripts/environment.sh
export CVSROOT=:kserver:isscvs.cern.ch:/local/reps/tridas
export CSCTF="/home/<mypath...>/TriDAS/trigger/csctf"

The next step is to check out from CERN CVS[9] the packages TriDAS/trigger/csctf and TriDAS/trigger/ts.  One can 
browse the CVS code and directories from the web link given in [9].

cvs co TriDAS/trigger/csctf
cvs co TriDAS/trigger/ts

edit TriDAS/trigger/ts/toolbox/environment.sh so that the local path lines match the correct local path. i.e. The first line 
becomes: export BUILD_HOME=/home/<mypath...>/TriDAS

Make the base library;
cd SPBaseInteractions
make

Ensure that the correct paths to the folders where the dynamically bound libraries are being created exist in the 
environmental variable LD_LIBRARY_PATH.  i.e. The compile above should have created the library CSCTF/
SPBaseInteractions/lib/linux/x86_slc4/SPBaseInteractions.so.  The path to the folder containing it, x86_slc4,  should 
appear in the output of echo LD_LIBRARY_PATH.  If it does not then it has to be added to it before one can use it in 
further compilations.12  The line to add it in a bash environment would be;

 export LD_LIBRARY_PATH=$CSCTF/SPBaseInteractions/lib/linux/x86_slc4:$LD_LIBRARY_PATH

This could be added to the .bashrc which would mean it would be automatically added for future logins.  All of the 
compiled .so libraries should similarly appear in the LD_LIBRARY_PATH.

make the SPFunctions library and its test executables
cd SPFunctions
make
cd test
make bin

make the LUT and FW library with its test executables:
cd SPLUTsAndFirmWare
make
cd test
make bin

make the rootUnpackSPDAQ executables:  Make sure that ROOT[6] is correctly installed on the system by typing in 
root and seeing it start, usually with the ROOT flash screen.
cd rootUnpackSPDAQ
./compile

make the SPValidation self -test library with its test executables:
cd SPValidation
make
cd test
make bin
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12 At one time, the group used a strategy of a linked library list which would automatically be sourced and add pertinent directories to 
the users path.  This was replaced by the trigger supervisor environment.sh list, which, unfortunately is currently notoriously 
unreliable.  This is why the user may have to worry about these standard compilation linking jobs.



make the stand alone executables, there is no library:
cd SPStandalones/test
make bin

make the CSCTF/ts Trigger Supervisor library:
cd ts
make

34



Appendix 4.  SBS Bus Adapters

As of April 2007, the support of SBS controllers as standard was deprecated within the CSCTF online software since 
the default controller was the CAEN[12].  Nevertheless, resurrection of a test stand that used an SBS to control the 
Track Finder Crate would not be too difficult since many of the SBS hooks in the code have been left in as comments.  
From 2007 onwards, much of the SBS driver code is supported within XDAQ, so depending on the exact setup, it may 
be possible to skip 

1/ Get the SBS working; 

install the PCI card and some driver libraries; we used to have the SBS directories in
home/csctf/VMEController (or something of type /home/usr/VMEController) and the commented out settings in 
the .bashrc,
Makefiles etc will reflect this.

2/ put back in the commented out lines (find dch, sbs).. in:

bashrc; put back in the lines for variables VME_DIR and SBS_VERSION
if you changed names/locations/version in (1) then this will need some attention

config/compdef.mk (really nasty little file)

SPBaseInteractions/Makefile
SPBaseInteractions/include/SPObjectParser.h
SPBaseInteractions/src/common/SPObjectParser.cc

Finally, worry about the compiling the packages below as you need them;

SPFunctions/Makefile

SPLUTsAndFirmware/Makefile

SPStandAlones/test/GNUMakefile
SPStandAlones/test/readWriteRegisterFuncts/*.cpp as needed, both includes and actual instatiation of bus adapter

SPValidation/Makefile
SPValidation/test/*.cpp as needed

TFHyperDAQ/Makefile
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