## MUON TESTER BOARD FOR THE CSC MUON PORT CARD AND MUON SORTER

#### MT'2004 Specification

Rice University

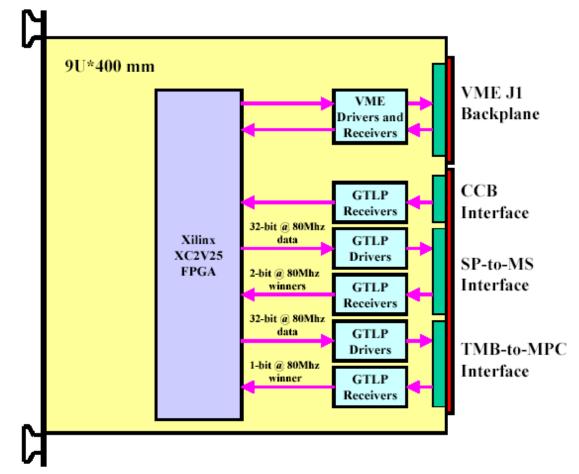
Version 1.1

05/11/2004

#### Abstract

This document describes the functionality of the MT'2004 board intended for testing of the custom backplane interfaces of the Muon Port Card (MPC) [1] and Muon Sorter (MS) [2] boards.

#### Introduction


The MPC board residing in the middle of the EMU peripheral crate will be getting data from up to nine Trigger Motherboards (TMB) [3] over custom peripheral backplane. The MS board residing in the middle of the Track Finder (TF) crate will be getting data from up to 12 Sector Processors (SP) [4]. Both custom backplanes utilize the 32-bit data transmission at 80Mhz from the TMB to the MPC and from the SP to the MS using GTLP logic levels. Full test of the MPC and MS would require 9 TMB's and 12 SP's boards installed. In some cases (especially during production testing of the MPC and MS) it would be more convenient to use a simple TMB or SP emulator that can provide the same data stream and timing. The proposed Muon Tester (MT'2004) board may be housed in any (peripheral or TF) crate and produce a data patterns from internal memory that represent either TMB or SP output format. The MT'2004 is fully programmable from VME. The proposed MT board can also be used for testing of the Clock and Control Board (CCB) [5].

Block diagram of the MT'2004 is shown on Figure 1. It comprises the VME drivers and receivers, CCB receivers, GTLP transmitters to MPC and MS and the FPGA that performs all the control functions.

### 1. CCB Interface

The MT'2004 receives the main 40.08Mhz clock, ccb\_cmd[5..0], ccb\_cmd\_strobe and some other optional signals from the CCB. The clock comes over LVDS lines, all other signals – over GTLP lines. Pin assignment of the 55-pin connector to CCB is shown in Table 1. The location of the CCB connector on both TMB and SP cards in respect to VME connector is the same, so the MT'2004 is compatible with both crates. An internal 40.08Mhz clock from on-board oscillator can be used for board debugging when the

CCB is unavailable. During normal operation the MT should always getting a clock from the CCB. The list of commands decoded from the ccb\_cmd[5..0] bus is shown in Table 2.



| Figure 1. | Block Diagran | n of the l | MT'2004 |
|-----------|---------------|------------|---------|
|           |               |            |         |

|     | Table 1: CCB Connector, peripheral and 1F crates |     |             |     |        |     |              |     |             |
|-----|--------------------------------------------------|-----|-------------|-----|--------|-----|--------------|-----|-------------|
| Pin | Signal                                           | Pin | Signal      | Pin | Signal | Pin | Signal       | Pin | Signal      |
| A1  | Ccb_clock+                                       | B1  | Ccb_clock-  | C1  | GND    | D1  | Conf_done    | E1  |             |
| A2  | Ccb_clken                                        | B2  | Ccb_reserv4 | C2  | GND    | D2  |              | E2  |             |
| A3  | Ccb_cmd0                                         | B3  | Ccb_cmd1    | C3  | GND    | D3  | Ccb_cmd2     | E3  | Ccb_cmd3    |
| A4  | Ccb_cmd4                                         | B4  | Ccb_cmd5    | C4  | GND    | D4  | Ccb_eventres | E4  | Ccb_bcntres |
| A5  | Ccb_cmd_str                                      | B5  | Ccb_bc0     | C5  | GND    | D5  | Ccb_lla      | E5  |             |
| A6  |                                                  | B6  |             | C6  | GND    | D6  |              | E6  |             |
| A7  |                                                  | B7  |             | C7  | GND    | D7  |              | E7  |             |
| A8  | Ccb_ready                                        | B8  | Ccb_reserv1 | C8  | GND    | D8  | Ccb_reserv2  | E8  | Ccb_reserv3 |
| A9  |                                                  | B9  |             | C9  | GND    | D9  |              | E9  |             |
| A10 |                                                  | B10 |             | C10 | GND    | D10 |              | E10 |             |
| A11 |                                                  | B11 |             | C11 | GND    | D11 |              | E11 |             |

#### **Table 2: Decoded CCB Commands**

| Command                   | Code (hex) | Description                             |
|---------------------------|------------|-----------------------------------------|
| Inject patterns from TMBs | 24         | Inject test patterns from FIFO_A to MPC |
| Inject patterns from SP   | 2F         | Inject test patterns from FIFO_B to MS  |

### 2. TMB Interface

Data that represents patterns from the TMB can be loaded into FIFO\_A that is 32-bit wide and 511 word deep. Then the data from FIFO\_A can be sent out of MT'2004 at 80Mhz on CCB (Table 2) or VME (Table 8) command. Two Fairchild GTLP16612MEA LVTTL-to-GTLP transmitters (same as on TMB board) are used for the backplane connection. Pin assignment of the TMB connector and data format are given in Tables 3 and 4 respectively.

The "winner" bit from the MPC can be accepted into FIFO\_C that is 1-bit wide and 511 word deep. The "winner" arrives at 80Mhz as well and can be latched into the FPGA with an adjustable (in respect to the main clock from CCB) input clock. Clock adjustments can be done dynamically over VME, see Table 8 and [6].

| Pin | Signal     | Pin | Signal     | Pin | Signal | Pin | Signal     | Pin | Signal     |
|-----|------------|-----|------------|-----|--------|-----|------------|-----|------------|
| A1  | Tmb_data0  | B1  | Tmb_data1  | C1  | GND    | D1  | Tmb_data2  | E1  | Tmb_data3  |
| A2  | Tmb_data4  | B2  | Tmb_data5  | C2  | GND    | D2  | Tmb_data6  | E2  | Tmb_data7  |
| A3  | Tmb_data8  | B3  | Tmb_data9  | C3  | GND    | D3  | Tmb_data10 | E3  | Tmb_data11 |
| A4  | Tmb_data12 | B4  | Tmb_data13 | C4  | GND    | D4  | Tmb_data14 | E4  | Tmb_data15 |
| A5  | Tmb_data16 | B5  | Tmb_data17 | C5  | GND    | D5  | Tmb_data18 | E5  | Tmb_data19 |
| A6  | Tmb_data20 | B6  | Tmb_data21 | C6  | GND    | D6  | Tmb_data22 | E6  | Tmb_data23 |
| A7  | Tmb_data24 | B7  | Tmb_data25 | C7  | GND    | D7  | Tmb_data26 | E7  | Tmb_data27 |
| A8  | Tmb_data28 | B8  | Tmb_data29 | C8  | GND    | D8  | Tmb_data30 | E8  | Tmb_data31 |
| A9  | Tmb_winner | B9  |            | C9  | GND    | D9  |            | E9  |            |
| A10 |            | B10 |            | C10 | GND    | D10 |            | E10 |            |
| A11 |            | B11 |            | C11 | GND    | D11 |            | E11 |            |

 Table 3: TMB Connector, peripheral crate

| First frame transmitted at 80MHz |                              |     |     | Second frame transmitted at 80Mhz    |     |  |  |
|----------------------------------|------------------------------|-----|-----|--------------------------------------|-----|--|--|
| Bit                              | Signal                       | LCT | Bit | Signal                               | LCT |  |  |
| 0                                | Wire Group_0                 | 0   | 0   | <sup>1</sup> / <sub>2</sub> -strip_0 | 0   |  |  |
| 1                                | Wire Group_1                 | 0   | 1   | <sup>1</sup> / <sub>2</sub> -strip_1 | 0   |  |  |
| 2                                | Wire Group_2                 | 0   | 2   | <sup>1</sup> / <sub>2</sub> -strip_2 | 0   |  |  |
| 3                                | Wire Group_3                 | 0   | 3   | <sup>1</sup> / <sub>2</sub> -strip_3 | 0   |  |  |
| 4                                | Wire Group_4                 | 0   | 4   | <sup>1</sup> / <sub>2</sub> -strip_4 | 0   |  |  |
| 5                                | Wire Group_5                 | 0   | 5   | <sup>1</sup> / <sub>2</sub> -strip_5 | 0   |  |  |
| 6                                | Wire Group_6                 | 0   | 6   | <sup>1</sup> / <sub>2</sub> -strip_6 | 0   |  |  |
| 7                                | CLCT Pattern_ID0             | 0   | 7   | <sup>1</sup> / <sub>2</sub> -strip_7 | 0   |  |  |
| 8                                | CLCT Pattern_ID1             | 0   | 8   | L/R Bend Angle                       | 0   |  |  |
| 9                                | CLCT Pattern_ID2             | 0   | 9   | SYNC_ER                              | 0   |  |  |
| 10                               | CLCT Pattern_ID3             | 0   | 10  | BXN[0]                               | 0   |  |  |
| 11                               | Quality_0 (used for sorting) | 0   | 11  | BC0                                  | 0   |  |  |
| 12                               | Quality_1 (used for sorting) | 0   | 12  | CSC_ID0                              | 0   |  |  |
| 13                               | Quality_2 (used for sorting) | 0   | 13  | CSC_ID1                              | 0   |  |  |
| 14                               | Quality_3 (used for sorting) | 0   | 14  | CSC_ID2                              | 0   |  |  |
| 15                               | Valid Pattern Flag           | 0   | 15  | CSC_ID3                              | 0   |  |  |
| 16                               | Wire Group_0                 | 1   | 16  | <sup>1</sup> / <sub>2</sub> -strip_0 | 1   |  |  |
| 17                               | Wire Group_1                 | 1   | 17  | <sup>1</sup> / <sub>2</sub> -strip_1 | 1   |  |  |
| 18                               | Wire Group_2                 | 1   | 18  | <sup>1</sup> / <sub>2</sub> -strip_2 | 1   |  |  |

| 19 | Wire Group_3                 | 1 | 19 | <sup>1</sup> / <sub>2</sub> -strip_3 | 1 |
|----|------------------------------|---|----|--------------------------------------|---|
| 20 | Wire Group_4                 | 1 | 20 | <sup>1</sup> / <sub>2</sub> -strip_4 | 1 |
| 21 | Wire Group_5                 | 1 | 21 | <sup>1</sup> / <sub>2</sub> -strip_5 | 1 |
| 22 | Wire Group_6                 | 1 | 22 | <sup>1</sup> / <sub>2</sub> -strip_6 | 1 |
| 23 | CLCT Pattern_ID0             | 1 | 23 | <sup>1</sup> / <sub>2</sub> -strip_7 | 1 |
| 24 | CLCT Pattern_ID1             | 1 | 24 | L/R Bend Angle                       | 1 |
| 25 | CLCT Pattern_ID2             | 1 | 25 | SYNC_ER                              | 1 |
| 26 | CLCT Pattern_ID3             | 1 | 26 | BXN[0]                               | 1 |
| 27 | Quality_0 (used for sorting) | 1 | 27 | BC0                                  | 1 |
| 28 | Quality_1 (used for sorting) | 1 | 28 | CSC_ID0                              | 1 |
| 29 | Quality_2 (used for sorting) | 1 | 29 | CSC_ID1                              | 1 |
| 30 | Quality_3 (used for sorting) | 1 | 30 | CSC_ID2                              | 1 |
| 31 | Valid Pattern Flag           | 1 | 31 | CSC_ID3                              | 1 |

#### **3. Sector Processor Interface**

Data that represents patterns from the SP can be loaded into FIFO\_B that is 32-bit wide and 511 word deep. Then the data from FIFO\_B can be sent out of MT'2004 at 80Mhz on CCB (Table 2) or VME (Table 8) command. Two TI SN74GTLPH16912 LVTTL-to-GTLP transmitters (same as on SP board) are used for the backplane connection. Pin assignment of the SP connector and data format are given in Tables 5 and 6 respectively.

Two "winner" bits from the MS can be accepted into FIFO\_D that is 2-bit wide and 511 word deep. The "winners" arrives also at 80Mhz and can be latched into the FPGA with an adjustable (in respect to the main clock from CCB) input clock. Clock adjustments can be done dynamically over VME, see Table 8 and [6]. The "winner" bit data format is given in Table 7.

| Table 5: 51 Connector, 11 Crate |           |     |           |     |           |     |           |     |           |
|---------------------------------|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|
| Pin                             | Signal    | Pin | Signal    | Pin | Signal    | Pin | Signal    | Pin | Signal    |
| A1                              |           | B1  |           | C1  | GND       | D1  |           | E1  |           |
| A2                              |           | B2  |           | C2  | GND       | D2  |           | E2  |           |
| A3                              |           | B3  |           | C3  | GND       | D3  |           | E3  |           |
| A4                              | Sp_win0   | B4  | Sp_win1   | C4  | GND       | D4  |           | E4  |           |
| A5                              | Sp_data0  | B5  | Sp_data1  | C5  | GND       | D5  | Sp_data2  | E5  | Sp_data3  |
| A6                              | Sp_data4  | B6  | Sp_data5  | C6  | GND       | D6  | Sp_data6  | E6  | Sp_data7  |
| A7                              | Sp_data8  | B7  | Sp_data9  | C7  | GND       | D7  | Sp_data10 | E7  | Sp_data11 |
| A8                              | Sp_data12 | B8  | Sp_data13 | C8  | Sp_data31 | D8  | Sp_data14 | E8  | Sp_data15 |
| A9                              | Sp_data16 | B9  | Sp_data17 | C9  | Sp_data18 | D9  | Sp_data19 | E9  | Sp_data20 |
| A10                             | Sp_data21 | B10 | Sp_data22 | C10 | Sp_data23 | D10 | Sp_data24 | E10 | Sp_data25 |
| A11                             | Sp_data26 | B11 | Sp_data27 | C11 | Sp_data28 | D11 | Sp_data29 | E11 | Sp_data30 |

#### Table 6: SP-to-MS Data Format

| ŀ   | First frame transmitted | at 80MHz | Second frame transmitted at 80Mhz |        |      |  |
|-----|-------------------------|----------|-----------------------------------|--------|------|--|
| Bit | Signal                  | Muon     | Bit                               | Signal | Muon |  |
| 0   | Phi_0                   | 1        | 0                                 | Rank_0 | 1    |  |
| 1   | Phi_1                   | 1        | 1                                 | Rank_1 | 1    |  |
| 2   | Phi_2                   | 1        | 2                                 | Rank_2 | 1    |  |
| 3   | Phi_3                   | 1        | 3                                 | Rank_3 | 1    |  |
| 4   | Phi 4                   | 1        | 4                                 | Rank_4 | 1    |  |

| _  |       |               | _  |        |               |  |  |  |
|----|-------|---------------|----|--------|---------------|--|--|--|
| 5  | Eta_0 | 1             | 5  | Rank_5 | 1             |  |  |  |
| 6  | Eta_1 | 1             | 6  | Rank_6 | 1             |  |  |  |
| 7  | Eta_2 | 1             | 7  | VC     | 1             |  |  |  |
| 8  | Eta_3 | 1             | 8  | С      | 1             |  |  |  |
| 9  | Eta_4 | 1             | 9  | HL     | 1             |  |  |  |
| 10 | Phi_0 | 2             | 10 | Rank_0 | 2             |  |  |  |
| 11 | Phi_1 | 2             | 11 | Rank_1 | 2             |  |  |  |
| 12 | Phi_2 | 2             | 12 | Rank_2 | 2             |  |  |  |
| 13 | Phi_3 | 2             | 13 | Rank_3 | 2             |  |  |  |
| 14 | Phi_4 | 2             | 14 | Rank_4 | 2             |  |  |  |
| 15 | Eta_0 | 2             | 15 | Rank_5 | 2             |  |  |  |
| 16 | Eta_1 | 2             | 16 | Rank_6 | 2             |  |  |  |
| 17 | Eta_2 | 2             | 17 | VC     | 2             |  |  |  |
| 18 | Eta_3 | 2             | 18 | С      | 2             |  |  |  |
| 19 | Eta_4 | 2             | 19 | HL     | 2             |  |  |  |
| 20 | Phi_0 | 3             | 20 | Rank_0 | 3             |  |  |  |
| 21 | Phi 1 | 3             | 21 | Rank_1 | 3             |  |  |  |
| 22 | Phi_2 | 3             | 22 | Rank_2 | 3             |  |  |  |
| 23 | Phi_3 | 3             | 23 | Rank_3 | 3             |  |  |  |
| 24 | Phi_4 | 3             | 24 | Rank_4 | 3             |  |  |  |
| 25 | Eta_0 | 3             | 25 | Rank_5 | 3             |  |  |  |
| 26 | Eta_1 | 3             | 26 | Rank_6 | 3             |  |  |  |
| 27 | Eta_2 | 3             | 27 | VC     | 3             |  |  |  |
| 28 | Eta_3 | 3             | 28 | С      | 3             |  |  |  |
| 29 | Eta_4 | 3             | 29 | HL     | 3             |  |  |  |
| 30 | BC0 * | Common to 1-3 | 30 | BX0 *  | Common to 1-3 |  |  |  |
| 31 | SE *  | Common to 1-3 | 31 | SP *   | Common to 1-3 |  |  |  |
|    |       |               |    |        |               |  |  |  |

• BC0 – Bunch Crossing Zero Flag

- BX0 Least significant bit of the buncg crossing counter
- SE Synchronization Error (Data out of sync)
- SP Spare bit

| Table 7: MS-to-SP "Winner" Bit Format |
|---------------------------------------|
|---------------------------------------|

| Line and frame | Function                                 |
|----------------|------------------------------------------|
| Sp_win0_Frame1 | "1" if Muon_1 was selected by MS from SP |
| Sp_win0_Frame2 | "1" if Muon_3 was selected by MS from SP |
| Sp_win1_Frame1 | "1" if Muon_2 was selected by MS from SP |
| Sp_win1_Frame2 | " <b>0</b> "                             |

## 4. VME Interface and Control and Status Registers (CSR)

The MT'2004 can be accessed in the VME crate using geographical addressing that utilizes the address pins GA<4-0> available on the VME64x backplane. In this mode the CCB'2004 recognizes its address space when the code on address lines A<23-19> is equal to the 5-bit geographical code of its slot. The board recognizes an AM codes 39(hex), 3A(hex), 3D(hex), 3E(hex) and supports A24D16 slave operations. The MT'2004 does not respond to byte-addressing modes, so all valid addresses must be even numbers. For example, if the board is located on slot 6, its base address is 300000(hex). The list of decoded VME commands is given in Table 8.

| Table 8: VME Comman | nds |
|---------------------|-----|
|---------------------|-----|

| Address | Access | Command                                                                           |  |  |  |
|---------|--------|-----------------------------------------------------------------------------------|--|--|--|
| Base+00 | R/W    | CSR0, general purpose                                                             |  |  |  |
| Base+02 | R      | CSR1, CCB interface status                                                        |  |  |  |
| Base+04 | R      | CSR2, FIFO status                                                                 |  |  |  |
| Base+06 | R      | CSR3, Date of firmware revision                                                   |  |  |  |
| Base+08 | R/W    | FIFO A, TMB data[150]                                                             |  |  |  |
| Base+0a | R/W    | FIFO_A, TMB_data[3116]                                                            |  |  |  |
| Base+0c | R/W    | FIFO_B, SP_data[150]                                                              |  |  |  |
| Base+0e | R/W    | FIFO_B, SP_data[3116]                                                             |  |  |  |
| Base+10 | R      | FIFO_C, TMB_winner over VME_data[0]. The rest VME_data[151] = "0"                 |  |  |  |
| Base+12 | R      | FIFO_D, SP_winner[10] over VME_data[10]. The rest VME_data[152] = "0"             |  |  |  |
| Base+14 | R      | Read L1A counter over VME_data[150]                                               |  |  |  |
| Base+16 | W      | Start transmission from FIFO_A                                                    |  |  |  |
| Base+18 | W      | Start transmission from FIFO_B                                                    |  |  |  |
| Base+1a | W      | Write fine phase clock shift into DCM to adjust an input clock for "winner" bits  |  |  |  |
| Base+1c | W      | Reset all FIFO buffers and L1A counter                                            |  |  |  |
| Base+1e | W      | Write fine phase clock shift into DCM to adjust a clock for output data to MPC/SP |  |  |  |

# 4.1. CSR0

## 4.2. CSR1

| Bit | Access | Function     |
|-----|--------|--------------|
| 0   | R      | Ccb_bcreset  |
| 1   | R      | Ccb_eventres |
| 2   | R      | Ccb_cmd0     |
| 3   | R      | Ccb_cmd1     |
| 4   | R      | Ccb_cmd2     |
| 5   | R      | Ccb_cmd3     |
| 6   | R      | Ccb_cmd4     |
| 7   | R      | Ccb_cmd5     |
| 8   | R      | Ccb_l1a      |
| 9   | R      | Ccb_bc0      |
| 10  | R      | Ccb_ready    |
| 11  | R      | Ccb_clken    |

| 12 | R | Ccb_res1 |
|----|---|----------|
| 13 | R | Ccb_res2 |
| 14 | R | Ccb_res3 |
| 15 | R | Ccb_res4 |

#### 4.3. CSR2

| Bit | Access | Function                                                                        |
|-----|--------|---------------------------------------------------------------------------------|
| 0   | R      | FIFO_A is full (active « 1 »)                                                   |
| 1   | R      | FIFO_B is full (active « 1 »)                                                   |
| 2   | R      | FIFO_C is full (active « 1 »)                                                   |
| 3   | R      | FIFO_D is full (active « 1 »)                                                   |
| 4   | R      | FIFO_A is empty (active «1 »). Also «1 » after power up and RESETFIFO command   |
| 5   | R      | FIFO_B is empty (active «1 »). Also «1 » after power up and RESETFIFO command   |
| 6   | R      | FIFO_C is empty (active « 1 »). Also « 1 » after power up and RESETFIFO command |
| 7   | R      | FIFO_D is empty (active « 1 »). Also « 1 » after power up and RESETFIFO command |
| 8   | R      | « 0 »                                                                           |
| 9   | R      | « 0 »                                                                           |
| 10  | R      | « 0 »                                                                           |
| 11  | R      | « 0 »                                                                           |
| 12  | R      | « 0 »                                                                           |
| 13  | R      | « 0 »                                                                           |
| 14  | R      | « 0 »                                                                           |
| 15  | R      | « 0 »                                                                           |

| 4   | 4.4. CSR3 |             |  |  |  |
|-----|-----------|-------------|--|--|--|
| Bit | Access    | Function    |  |  |  |
| 0   | R         | Day, LSB    |  |  |  |
| 1   | R         | Day         |  |  |  |
| 2   | R         | Day         |  |  |  |
| 3   | R         | Day         |  |  |  |
| 4   | R         | Day, MSB    |  |  |  |
| 5   | R         | Month, LSB  |  |  |  |
| 6   | R         | Month       |  |  |  |
| 7   | R         | Month       |  |  |  |
| 8   | R         | Month, MSB  |  |  |  |
| 9   | R         | Year, LSB * |  |  |  |
| 10  | R         | Year *      |  |  |  |
| 11  | R         | Year, MSB * |  |  |  |
| 12  | R         | « 0 »       |  |  |  |
| 13  | R         | « 0 »       |  |  |  |
| 14  | R         | « 0 »       |  |  |  |
| 15  | R         | « 0 »       |  |  |  |

\* CSR3[11..9] should be added to 2000 to get an actual year

## 5. JTAG Access to FPGA and EPROM

The Xilinx XC2V25-4FG456 FPGA requires one XC18V02 EPROM. Both FPGA and EPROM can be programmed over Xilinx Parallel Cable IV. A 14-bit header is placed near the FPGA on MT'2004 board.

## 6. On-board switches and fuses

Switch S1 is needed to configure/program the FPGA and EPROM over JTAG.

S1-1 is not used.

S1-2 and S1-3 define the configuration mode of the FPGA (see Table 9 below). Master SelectMAP mode should be chosen by default.

Table 9

| S1-2 | S1-3 | Mode             |  |  |  |
|------|------|------------------|--|--|--|
| off  | off  | Slave Serial     |  |  |  |
| on   | off  | Boundary Scan    |  |  |  |
| off  | on   | Master SelectMAP |  |  |  |
| on   | on   | Not used         |  |  |  |

S1-4, 5, 6 allow to change the order of EPROM and FPGA in a JTAG chain (Table 10).

Table 10

| S1-4       | S1-5 | S1-6 | JTAG chain                              |
|------------|------|------|-----------------------------------------|
| on         | off  | on   | XC18V02VQ44C EPROM + XC2V250-FG456 FPGA |
| on         | on   | off  | XC18V02VQ44C EPROM                      |
| All others |      |      | Not effective                           |

S1-7 controls the HSWAP\_EN pin of the FPGA. If "on", it activates the internal pull-up for user i/o in the device prior to configuration. By default, HSWAP\_EN is tired "1" with internal pull-up resistor.

S1-8 (when "on") allows to reconfigure the FPGA from EPROM on "Hard\_reset" commands.

Switch S2 allows to chose the clock source for the FPGA. The source is a backplane clock from CCB when S2-1 is "on" and on-board oscillator when S2-2 is "on". Only one switch (either S2-1 or S2-2) should be "on".

S3 should be used only for debugging purposes. It allows to select the geographical addresses GA[4..0] when VME64x backplane is not available.

Switches S5 and S6 allows to select the operational mode of output GTLP transmitters to SP (S5) and TMB (S6). The mode is transparent when S5-2 (or S6-2) is "on" and clocked (with 80Mhz clock produced by DCM in the FPGA) when S5-1 (or S6-1) is "on".

When S4-1 is "on", the on-board oscillator turns off. S4-2 is not used.

Fuse F3 must be installed at any time, it provides +5V power from VME backplane. Fuse F2 provides +3.3V power from the VME64x backplane, while F4 provides +3.3V from on-board voltage regulator U23. Only one (by default, F2) should be installed. Fuse F1 is

needed to provide +1.5V for the FPGA core and GTLP termination (winner bits). It should be installed at any time.

## 7. Front Panel

There are 18 LEDs on the front panel:

- +3.3V (D17), +5V (D16), +1.5V (D18) active on-board powers (green)
- "DONE" (D1) FPGA configuration from EPROM done successfully (green)
- "LOCK" (D2) FPGA DLL's have been locked (green)
- "DACK" (D3) indicates VME access to MT (green, with one-shot)
- "FULA" (D4) TMB data FIFO is full (read)
- "FULB" (D5) SP data FIFO is full (read)
- "FULC" (D6) TMB "winner" FIFO is full (read)
- "FULD" (D7) SP "winner" FIFO is full (read)
- "EMPA" (D8) TMB data FIFO is empty (red)
- "EMPB" (D9) SP data FIFO is empty (red)
- "EMPC" (D10) TMB "winner" FIFO is empty (red)
- "EMPD" (D11) SP "winner" FIFO is empty (red)
- "ST\_TMB" (D12) indicates start of data transmission from FIFO\_A (red, with one-shot)
- "ST\_SP" (D13) indicates start of data transmission from FIFO\_B (red, with one-shot)
- "CLKC" (D14) indicates that the main CCB clock is OK (red). Provided by the counter inside FPGA with a frequency of ~10Hz
- "CLKV" (D15) indicates that the 16Mhz VME clock is OK (red). Provided by the counter inside FPGA with a frequency of ~10Hz

## References

[1]. Muon Port Card Specification. Available at

http://bonner-ntserver.rice.edu/cms/MPC2002.pdf

[2]. Muon Sorter Specification. Available at http://bonner-ntserver.rice.edu/cms/MS2003.pdf

[3]. Trigger Motherboard Specification. Available at

http://www-collider.physics.ucla.edu/cms/trigger/tmb2003/tmb2003\_spec\_v1p01.pdf

[4]. Sector Processor documentation. Available at

http://www.phys.ufl.edu/~uvarov/tf\_crate/interfaces.htm

[5]. Clock and Control Board documentation. Available at

http://bonner-ntserver.rice.edu/cms/projects.html#ccb

[6]. Xilinx Virtex-2 documentation is available at

http://direct.xilinx.com/bvdocs/publications/ds031-2.pdf

## History

01/30/2004: Initial release 03/17/2004: Changes in Table 8.