
The CCB2004, MPC2004 and MS2005 User’s Guide

Rice University

October 13, 2009

Version 1.4.7

1. Clock and Control Board CCB2004

This User’s Guide should be used together with the CCB2004 Specification [1] and the
TTCrx Reference Manual [2]. The TTCrx ASIC can be programmed from the TTC
source (four main registers, write only, see Section 1.1) and over I2C serial bus using
VME accesses in the CCB2004 address space (write and read, see Section 1.2). JTAG
access to TTCrx ASIC has not been implemented on the CCB2004 board.

1.1 Initialization

After power cycling make sure that the four green LEDs on the front panel indicating
active powers as well as “DONE” LED (FPGA was successfully configured from its
EPROM) are “on”. When optical connection between the TTCrq and the source of the
TTC clock and commands (TTCvi [3] or TTCci modules) is established, the “TTCRDY”
and “QLOCK” LEDs of the front panel of the CCB2004 must be “on”. They just repeat
the state of the respective LEDs on TTCrq mezzanine board (also visible through the
CCB2004 front panel). If an optical fiber is plugged in from both sides, and both source
and destination operate properly, the connection will be established automatically after
power cycling. Make sure the “CLK40” LED on the front panel is blinking (~7Hz). Then:

1. Program CSRA1 (write data = Fh for the “Discrete Logic” mode, write data = Eh
for the “FPGA” mode). The only source of L1A for all boards in the crate in a
“Discrete Logic” mode will be the TTCrx ASIC.

2. Program CSRB1. CSRB1[0]=0 for the “FPGA External” and CSRB1[0]=1 for the
“FPGA Internal” modes. Use appropriate values to mask/unmask the L1A
sources. Note: It’s important to program the CSRB1 even if the CCB2004 is in
“Discrete Logic” mode to be able to use the L1A front panel output correctly.

3. Write any data into CSRA3 (generate “Soft_Reset” for the FPGA).
“Soft_Reset” command enables propagation of selected L1A and “external
trigger” signals to custom backplane, disables 32-bit L1A counter and resets the
CSRB11[10..8] bits. It does not affect the content of all other CSRB[1..18]
registers. A “Hard_Reset” command is intended for recovery from possible
Single Event Upsets in the LHC environment. It is not necessary to send a
“Hard_Reset” during initialization.

 2

4. Write appropriate delay value into CSRB5. It affects the delay of the L1A signal
to custom backplane in the “FPGA” mode and delay of the L1A to the front panel
(in both “FPGA” and “Discrete Logic” modes).

5. (Optional) Read CSRB17 to verify the date of the firmware revision.

All the CCB2004 boards are equipped with the TTCrq mezzanines [2]. The jumpers on
TTCrq board (see Chapter 8 in [2]) select the unique 14-bit ID address of the mezzanine
that is required for the individually addressed TTC commands as well as for the I2C
accesses to TTCrx. This address must be latched into the ASIC during initialization at
the rising edge of the Reset_b signal. To do this the following steps are needed:

6. Send “Reset TTCrx ASIC” command (write any data to base+5C address).
7. Wait at least 60 microseconds.
8. Read CSRB18. CSRB18[15..8]=00000001 for all the TTCrq mezzanines intended

for the CSC system. Bits CSRB18[7..0] are unique for each CCB2004 and equal
to a serial number (1..99) of the main CCB2004 board. This number is labeled on
the front panel and on the main board as well. Out of these 8 bits, the lowest 6 bits
are used to calculate the base I2C address, see Chapter 7 in [2]. The 14-bit ID
address can also be read back and verified directly from the TTCrx ASIC over I2C
bus, registers 16-18, see Chapter 3 in [2].

9. Read CSRA2 and CSRA3. Make sure CSRA3[13..12] = 1 and CSRA3[14] = 0.
Check the other bits in CSRA2 and CSRA3 to verify that all the installed
peripheral boards were configured successfully.

10. (Optional) Read the unique 64-bit board ID (see Section 1.3).

Initialization of the TTCrx ASIC requires the following steps (examples below are
referred to TTCvi module. The same procedures can be performed over I2C bus as well).

11. Write fine delay values “xx” into “Fine Delay” register 1 in the TTCrx ASIC if
needed (see Appendix A in [2] for more details):

- write data = 8000h into base+C0 address on TTCvi board
- write data = xxh into base+C2 address on TTCvi board

12. Write coarse delay values “x” into “Coarse Delay” register in the TTCrx ASIC
(note that bits [3:0] must be equal to bits[7:4] for correct command decoding):

- write data = 8000h into base+C0 address on TTCvi board
- write data = 2xxh into base+C2 address on TTCvi board.

13. Program Control Register in the TTCrx ASIC:
- write data = 8000h into base+C0 address on TTCvi board
- write data = 3b3h into base+C2 address on TTCvi board (enable

parallel output bus of the TTCrx, enable bunch counter and event
counter operation, so the Trigger mode “11” is selected, see
Chapter 6 in [2], use Clock40Des1 for the synchronization of the
BrcstStr2 and the broadcast command bits Brcst[7:6]).

 3

14. Clear the discrete logic decoder on CCB2004 board with the long-format
broadcast command = 0:

- write data = 8001h into base+C0 register on TTCvi board
- write data = 0 into base+C2 address on TTCvi board.

1.2. I2C Interface

The I2C is a 2-wire interface used on CCB2004 board for communications with the
TTCrx ASIC residing on a TTCrq mezzanine board. General description of the I2C
protocol can be found in [4], while the TTCrx specific implementation of the I2C
functions can be found in Chapter 7 of the TTCrx Reference Manual [2]. The I2C
interface provides access to all the internal registers of the TTCrx ASIC from the VME
through the CSR1[4..1] bits, see Section 6 of the CCB2004 specification [1]. The I2C
access is possible in any (“Discrete Logic” or “FPGA”) mode of the CCB2004 operation.

Note that the correct operation of the I2C bus requires the TTCrx to be locked to
the TTC signal (“TTC_Ready”=1), see Chapter 7 in [2].

Each TTCrq board has a unique 14-bit ID number encoded with the soldered resistors, as
shown on Fig.9 [2]. A 6-bit portion Dout<5..0> of this 14-bit ID number defines the base
I2C address as described in Table 12 [2]. On all production CCB2004 boards this 6-bit
address is equal to serial number of the boards which is labeled on its front panel. For
example, Dout<5..0>=32h on TTCrq which is installed on CCB2004 #50. This number
must be loaded into the TTCrx ASIC at the rising edge of the Reset_b signal. A reset of
the TTCrx (by writing any data to base+5Ch address of the CCB2004) should be done
only once during CCB2004 initialization. The duration of the reset procedure should be
~60 microseconds (as described in steps 1-3 in Section 1.1. above), so the next operation
should be delayed for that period. The following steps are required to perform a write
(read) operation after that (this is an example for the “FPGA” mode):

1. Generate “Start” condition (“high-to-low” transition on SDA line when SCL is
“high”):

- write data = Eh into CSRA1 (set both SDA and SCL lines “high”, i.e.
inactive)

- write data = Ah into CSRA1 (set SDA “low”)
- write data = 2 into CSRA1 (set SCL “low).

2. Write 7-bit address of the pointer register (MSB should be written first, LSB

last). This address is calculated as Dout<5..0> * 2. During all write cycled the
CSRA1[1] should be “1”. Data is written on “low-to-high” transition of SCL
while SDA is valid. To load “1” the following steps are required:

- write data = 6 into CSRA1 (set SDA = 1 while SCL=0)
- write data = Eh into CSRA1 (set SCL = 1)
- write data = 6 into CSRA1 (set SCL = 0)
- write data = 2 into CSRA1 (release SDA)

 To load “0” the following steps are required:

 4

- write data = 2 into CSRA1 (set SDA = 0 while SCL=0)
- write data = Ah into CSRA1 (set SCL = 1)
- write data = 2 into CSRA1 (set SCL = 0, SDA = 0)

 Load all 7 bits of the pointer address as described above.
3. Write the 8th bit called “write” = 0, as described above.
4. Check the “acknowledgement” signal:

- write data = 4 into CSRA1 (enable “read” operation, set SDA “high”)
- write data = Ch into CSRA1 (set SCL “high” while SDA is “high”)
- read CSRA1 and make sure the CSRA1[4]=0 (i.e. the cycle was

acknowledged)
- write data = 4 into CSRA1 (set SCL “low” while SDA is “high”)
- write data = 2 into CSRA1 (disable “read” operation)

5. Write the 8-bit number of the register to be addressed, MSB first, LSB last,
similarly to step 2 above. This could be any TTCrx internal register listed in the
Table 3 of [2].

6. Check the “acknowledgement” as described in step 4 above.
7. Generate “stop” condition (“low-to-high” transition on SDA while SCL is

“high”):
- write data = 2 into CSRA1 (set SDA = SCL = “low”)
- write data = Ah into CSRA1 (set SDA “high”)

 - write data = Eh into CSRA1 (set SCL “high”).
8. Write data to the register selected by the pointer (or read data; see 8.1.below):

- generate “start” condition
- write 7-bit address of the data register as described in step 2. The

address of the data register = address of the pointer + 1
- write the 8th bit called “write” = 0
- check the “acknowledgement”
- write 8-bit data into data register, MSB first, LSB last
- check the “acknowledgement”
- generate “stop” condition.

 8.1. Read data from the register selected by the pointer
- generate “start” condition
- write 7-bit address of the data register to read data from . The address

of the data register = address of the pointer + 1
- write the 8th bit =1 (for read operation)
- check the “acknowledgement”
- read 8-bit data (MSB first, LSB last). Each read cycle consists of the

following four steps:
1. write data = 4 to CSRA1 (enable read, set SDA “high” or inactive)
2. write data = Ch to CSRA1 (set SCL “high”)
3. read CSRA1 and get the expected read value from CSRA1[4]
4. write data = 4 to CSRA1 (set SCL “low” while SDA is “high”)

- check the “no acknowledgement” state, i.e. read CSRA1 and verify that
the CSRA1[4]=1

- generate “stop” condition.
An example of the C++ program to perform I2C accesses to TTCrx ASIC is given in [5].

 5

1.3. 1-Wire Interface

1-Wire is a proprietary Maxim – Dallas Semiconductor interface for communication with
the Silicon Serial Number DS2401 chip that consists of a factory-lasered 64-bit ROM
that includes a unique 48-bit serial number, an 8-bit CRC, and an 8-bit Family Code
(01h). Data is transferred serially via the 1-Wire protocol, read and write least significant
bit first. The protocol details and timing diagrams are given in [6]. Access to serial
number chip consists of three phases: Initialization, ROM Function Command, and Read
Data.

The Initialization sequence consists of a “Reset pulse” transmitted by the master followed
by a “Presence pulse” transmitted by the DS2401. The “Presence pulse” lets the bus
master know that the DS2401 is on the bus and ready to operate. For the Initialization,
the “Reset pulse” should be sent, then CSRB9[2] should be checked, and, when the
CSRB9[2]=1, the CSRB9[0] should be read out. If CSRB9[0]=0 at this moment, that
means that the “Presence pulse” was sent and the next step can be performed.

The ROM Function Command phase consists of sending a Read ROM command [33h]
or [0Fh] to DS2401. The first bit (“Write-one”) should be sent, then CSRB9[4] scanned,
and, when CSRB9[4]=1, the next bit of command should be sent. Since all commands are
8-bit long, eight write operations are necessary.

The Read Data phase consists of 64 read cycles. Each cycle starts with sending a “Read
pulse”, then CSRB9[3] is scanned, and, when CSRB9[3]=1, the valid data bit should be
received from CSRB9[1]. Note the first data bit should be “1” and the next seven bits
should be “0” (they represent the Family Code 01h). Bits 49-56 are also “0” and bits 57-
64 represent the CRC code.

An example of the C++ program to read the DS2401 serial ID can be found in [7].

1.4. JTAG Access to FPGA and EPROM and Firmware Upgrade

One Xilinx XC2V250-4FG456 FPGA and one XC18V02 EPROM are used on CCB2004
board. Both devices can be accessed over JTAG bus. JTAG protocol can be emulated
using write and read operations directed to CSRA1[8..5]. The other optional access is
possible using Xilinx Parallel Cable IV over the front panel connector. An on-board
switch S10-1 defines which of these two options is selected. The EPROM is the 1st
device in a JTAG chain, and the FPGA is the 2nd one. Files with the .mcs and .svf
extension (produced by Xilinx ISE development system) are needed to reprogram the
EPROM with the Xilinx downloading cable and VME path respectively. The most recent
version of the downloading file can be found in [8].

Four bits of CSRA1[8..5] (bit 5 for TDI, bit 6 for TMS, bit 7 for TCK, bit 8 for TDO) are
used to implement the JTAG protocol. These four Test Access Point (TAP) pins control
how data is scanned into the various registers. The state of the TMS pin at a rising edge

 6

of TCK determines the sequence of state transitions. There are two main sequences, one
for shifting data into the data register and the other for shifting an instruction into the
instruction register (see State Diagram for the TAP Controller on Fig.1). Below is an
example of how to read the 32-bit IDCODE code from Xilinx XC18V02 EPROM over
JTAG using VME accesses. Datasheet [9] is essential for understanding of the JTAG
access to Xilinx EPROM.

Figure 1: State Diagram for the TAP Controller

1. Set Test-Logic-Reset mode 5 times: repeat 5 times the following sequence:
- write data = 4Fh into CSRA1 (set TMS =1)
- write data = CFh into CSRA1 (set TCK =1)
- write data = 4Fh into CSRA1 (set TCK = 0)
- write data = 0Fh into CSRA1 (set TMS = 0).

2. Set Run-Test/Idle mode:
- write data = 0Fh into CSRA1 (set TMS = TCK = TDI =0)
- write data = 8Fh into CSRA1 (set TCK =1)
- write data = 0Fh into CSRA1 (set TCK =0).

3. Set Select-DR-Scan mode:
- write data = 4Fh into CSRA1 (set TMS =1)
- write data = CFh into CSRA1 (set TCK = 1)
- write data = 4Fh into CSRA1 (set TCK = 0)

 7

- write data = 0Fh into CSRA1 (set TMS = 0).
4. Set Select-IR-Scan mode:

- write data = 4Fh into CSRA1 (set TMS =1)
- write data = CFh into CSRA1 (set TCK = 1)
- write data = 4Fh into CSRA1 (set TCK = 0)

 - write data = 0Fh into CSRA1 (set TMS = 0).
5. Set Capture_IR-Scan mode:

- write data = 0Fh into CSRA1 (set TMS = TCK = TDI =0)
- write data = 8Fh into CSRA1 (set TCK =1)
- write data = 0Fh into CSRA1 (set TCK =0).

6. Set Shift-IR-Scan mode:
- write data = 0Fh into CSRA1 (set TMS = TCK = TDI =0)
- write data = 8Fh into CSRA1 (set TCK =1)
- write data = 0Fh into CSRA1 (set TCK =0).

7. Send 6-bit Bypass instruction “111111” to XC2V250 FPGA. To do this, repeat 6
times the following sequence:

- write data = 2Fh into CSRA1 (set TDI = 1)
- write data = AFh into CSRA1 (set TCK =1)
- write data = 2Fh into CSRA1 (set TCK =0)
- write data = 0Fh into CSRA1 (set TDI =0)

8. Send 8-bit IDCODE instruction “11111110” (FEh) to EPROM. Repeat 8 times
a process similar to step 7. LSB sent first, MSB sent last along with the TMS bit.

9. Set Update-IR mode:
- write data = 4Fh into CSRA1 (set TMS = 1)
- write data = CFh into CSRA1 (set TCK = 1)
- write data = 4Fh into CSRA1 (set TCK = 0)
- write data = 0Fh into CSRA1 (set TMS = 0).

9. Set Select-DR-Scan mode:
- write data = 4Fh into CSRA1 (set TMS = 1)
- write data = CFh into CSRA1 (set TCK = 1)
- write data = 4Fh into CSRA1 (set TCK = 0)
- write data = 0Fh into CSRA1 (set TMS = 0).

10. Set Capture-DR mode:
- write data = 0Fh into CSRA1 (set TMS = TCK = TDI =0)
- write data = 8Fh into CSRA1 (set TCK =1)
- write data = 0Fh into CSRA1 (set TCK =0).

11. Set Shift-DR mode:
- write data = 0Fh into CSRA1 (set TMS = TCK = TDI =0)
- write data = 8Fh into CSRA1 (set TCK =1)
- write data = 0Fh into CSRA1 (set TCK =0)
- read CSRA1[8]. This is bit 0 of the 32-bit IDCODE.

12. Repeat step 12 31 times to get the other 1..31 bits of IDCODE.
13. Set Update-DR mode

- write data = 4Fh into CSRA1 (set TMS = 1)
- write data = CFh into CSRA1 (set TCK = 1)
- write data = 4Fh into CSRA1 (set TCK = 0)

 8

- write data = 0Fh into CSRA1 (set TMS = 0).

The IDCODE assigned to XC18V02 EPROM is 05025093h. The IDCODE from the
FPGA can be read out in a similar way. An example of the C++ program to reprogram
the EPROM over VME can be found in [10].

1.5. CCB2004 Test with the TTCvi/TTCvx and TMB2005

The CCB2004 resides in the peripheral crate with at least one TMB2005 board. Optical
connection to TTC source (a pair of TTCvi [3] and TTCvx [11] boards) is established.
The test allows to verify internal functionality of the CCB2004 as well as distribution of
the TTC broadcast commands and L1A signal over custom peripheral backplane to one
or more TMB2005 [12] boards. The following procedures are required:

1. Verify that the TTC link is established (“TTCRDY” and “QLOCK” LED on the
front panel are “on” and corresponding bits from CSRA3[13]=CSRA3[14]=1).
Also make sure the FPGA was configured successfully (CSRA3[12]=1).

2. Make sure the “CLK40” LED on the front panel is blinking at a frequency of
~7Hz. If not, there is a problem with clock recovery/distribution from the TTCrx.

3. (Optional) read CSRB17 and verify the date of the firmware revision.
4. Run VME access test: write, read and verify the content of CSRB1…CSRB8.
5. Initialize the CCB2004 as described in Section 1.1. Set “Discrete Logic” mode.

Read CSRB18 and verify the value returned on CSRB18[7:0] against the serial
number of the CCB2004 board (labeled on the front panel).

6. Write data = DFF4h into CSRB1 (TTCrx is a source of broadcast commands,
L1A from the TTCrx is enabled).

7. Write data = 4 into CSR1 of TTCvi (address $80) to enable L1A generation on
VME command.

8. Write any data to address Base+94h on CCB2004 (reset L1ACC counter)
9. Write any data to address Base+96h on CCB2004 (enable L1ACC counter to

count).
10. Write data = 1 into address $C4h of TTCvi (broadcast command = BCntRes).

Make sure the “BCRES” and “CMDSTR” LEDs on the front panel of the
CCB2004 are blinking.

11. Write data = 2 into address $C4h of TTCvi (broadcast command = EvCntRes).
Make sure the “EVCRES” and “CMDSTR” LEDs on the front panel of the
CCB2004 are blinking.

12. Write data = 4 into address $C4h of TTCvi (broadcast command = 1, or BC0).
Make sure the “BC0” and “CMDSTR” LEDs on the front panel of the CCB2004
are blinking. Read back the CSRB15 and verify that the returned value = 4. Read
back the ADR_CCB_STAT from available TMB2005 board(s) and verify that
the returned value is “1” (note there is no 2-bit shift to the left in the
ADR_CCB_STAT register).

13. Write data = Ch into address $C4h of TTCvi (broadcast command = 3, or
L1Reset). Make sure the “L1RES” and “CMDSTR” LEDs on the front panel of
the CCB2004 are blinking. Read back the CSRB15 and verify that the returned

 9

value = Ch. Read back the ADR_CCB_STAT from available TMB2005 board(s)
and verify that the returned value is “3” (note there is no 2-bit shift to the left in
the ADR_CCB_STAT register).

14. Write data = 10h into address $C4h of TTCvi (broadcast command = 4, or
Hard_Reset). Make sure the “HRESET” and “CMDSTR” LEDs on the front
panel of the CCB2004 are blinking. Read back the CSRB15 and verify that the
returned value = 10h. Make sure the TMB2005 board(s) react to this command
(LEDs on the front panel).

15. Write data = 3Ch into address $C4h of TTCvi (broadcast command = Fh, or
CCB_Hard_Reset). Make sure the “CCBHR” and “CMDSTR” LEDs on the
front panel of the CCB2004 are blinking. Read back the CSRB15 and verify that
the returned value = 3Ch.

16. Write data = 40h into address $C4h of TTCvi (broadcast command = 10h, or
TMB_Hard_Reset). Make sure the “HRESET” and “CMDSTR” LEDs on the
front panel of the CCB2004 are blinking. Make sure the TMB2005 board(s) react
to this command (LEDs on the front panel).

17. Write data = 4Ch into address $C4h of TTCvi (broadcast command = 13h, or
MPC_Hard_Reset). Make sure the “HRESET” and “CMDSTR” LEDs on the
front panel of the CCB2004 are blinking. Make sure the MPC2004 reacts to this
command (LEDs on the front panel).

18. Generate the other short broadcast commands by writing corresponding codes
into address $C4h (TTCvi) and verifying the returned values from CSRB15
(CCB2004) and ADR_CCB_STAT (TMB2005) registers.

19. Check propagation of the L1A from the TTC source down to TMB2005 board(s):
- write data = 1, then data = 0 into ADR_CNT_CTRL of TMB2005 (clear

all counters)
- write any data to address $86h of TTCvi (N=1..100000) times to generate

(N) L1A pulses. Make sure the “L1A” LED on the front panel of the
CCB2004 is blinking.

- read back the data from Base+90h and Base+92h addresses of CCB2004
and verify the returned values against the number (N) of transmitted L1A

- write data = 2 into ADR_CNT_CTRL of TMB2005 (take snapshot of
current counter state)

- write data = 2800h into ADR_CNT_CTRL of TMB2005
- read back the content of ADR_CNT_RDATA and verify against the

number of L1A transmitted (lowest 16 bits)
- write data = 2900h into ADR_CNT_CTRL of TMB2005
- read back the content of ADR_CNT_RDATA and verify against the

number of L1A transmitted (highest 16 bits)
- (Optional, only in “Discrete Logic” or “FPGA External” mode). The 12-

bit Bunch and 24-bit Event counters are multiplexed on the BCnt<11:0>
counter output bus of the TTCrx ASIC. Upon reception of an L1A signal,
the TTCrx makes the content of these counters (depending on “Trigger
Mode” as defined by bits 0 and 1 in the control register of the TTCrx)
available on BCnt<11:0> bus with the respective strobes. These values are
latched into the three registers CSRB12-CSRB14 on the CCB2004 board

 10

and available for read. The following steps are required to test this
functionality:

a. send BCRES and EVCRES broadcast commands from the
TTC source (load data = 3 into $C4h address on TTCvi)

b. send (N) L1A pulses from the TTC source
c. read CSRB12 and make sure the returned value is changing

(bunch counter counts permanently)
d. read CSRB13 and CSRB14 and verify the returned value

against the values read out from the CCB2004 and
TMB2005 (above). Note that the first event will be marked
as event number zero, so the value in CSRB13 and
CSRB14 should always be (N-1) while the content of L1A
counters available from the CCB2004 and TMB2005
should be (N).

20. Check propagation of the long-format asynchronous cycles from the TTC:
- write data = 8001h into address $C0h of TTCvi (broadcast command with

TTCrx=0)
- write data = 0…FFFFh into address $C2h of TTCvi (send command)
- make sure the “DATSTR” LED on the front panel of CCB2004 is

blinking
- read CSRB16 and verify the returned value against the data in register

$C2h.
21. Switch to “FPGA External” mode:

- write data = Eh into CSRA1
- write data = DFF4h into CSRB1

 Repeat steps 7-21.
22. Switch to “FPGA Internal” mode:

- write data = Eh into CSRA1
- write data = DFE9h into CSRB1 (CSRB2 is a source of short broadcast

commands, CSRB3 is a source of long commands, L1A will be generated
on VME command).

23. Repeat steps 8-20 with the CSRB2 as a source of short broadcast commands
(instead of register $C4h) and CSRB3 as a source of long commands instead of
register $C2h). Write any data to address Base+54h on CCB2004 to generate the
L1A pulse.

24. (Optional). Check propagation of the TMB_L1A_Request signal from the
TMB2005 to CCB2004. This signal causes generation of L1A, when enabled. The
following steps are required:

- write data = DFDEh into CSRB1 (Enable TMB_L1A_Request)
- write data = 1, then data = 0 into ADR_CNT_CTRL of TMB2005 (clear

all counters)
- initialize the TMB_L1A_Request generator on TMB2005 board. The

generator starts generating 25 ns L1A_Request pulses (at ~3MHz
frequency) on “Start Trigger” and stops generating on “Stop Trigger”
commands:

a. write data = 3dh into ADR_CCB_CFG of TMB2005

 11

b. write data = 7204h into ADR_CCB_TRIG
c. write data = 0 into ADR_ALCT_INJ
d. write data = 5h into ADR_ALCT_INJ
e. write data = 85h into ADR_ALCT_INJ
f. write data = 3 into ADR_TMBTIM
g. write data = FFE0h into ADR_CFEB_INJ
h. write data = 3FFh into ADR_SEQ_TRIG_EN
i. write data = 7C00h into ADR_TRIG_EN
j. write data = FFFh into ADR_SEQ_L1A
k. write data = 1 into ADR_TRIG_EN
l. write data = FFFDh into ADR_ALCT_INJ
m. write data = 1 into ADR_CCB_CMD
n. write data = 603h into ADR_CCB_CMD (“Start Trigger”)
o. write data = 1 into ADR_CCB_CMD
p. write data = 103h into ADR_CCB_CMD (“BC0”)
q. write data = 1 into ADR_CCB_CMD
r. write data = 7FFFh into ADR_CFEB_INJ_ADR
s. write data = 8000h into ADR_CFEB_INJ_ADR
t. write data = 7FFFh into ADR_CFEB_INJ_ADR
u. write data = 1 into ADR_CCB_CMD
v. write data = 703h into ADR_CCB_CMD (“Stop Trigger”)
w. write data = 1 into ADR_CCB_CMD

- read back the content of Base+90h and Base+92h registers of CCB2004
- write data = 2 into ADR_CNT_CTRL of TMB2005 (take snapshot of

current counter state)
- write data = 2800h into ADR_CNT_CTRL of TMB2005
- read back the content of ADR_CNT_RDATA and verify it against the

value that was read out from the Base+90h address (lowest 16 bits)
- write data = 2900h into ADR_CNT_CTRL of TMB2005
- read back the content of ADR_CNT_RDATA and verify it against the

value that was read out from the Base+92h address (highest 16 bits).

1.6. CCB2004 Test in the Track Finder Crate

Repeat steps 1-5 described in Section 1.5. Make sure the “NO LOCK” LED on the front
panel of all SP05 boards in the Track Finder crate is “off” (the QPLL on SP05 board
must be locked to the backplane clock provided by CCB2004).

The SP05 firmware allows to analyze timing of the CCB2004 command strobe with
respect to the SP05 system clock, as well as the CCB2004 command itself, in the CCB
analyzer STS_ANA [13]. The analyzer is 64 words deep and available for read from
VME. To check command transmission from the CCB2004 to SP05 the following steps
are required:

- set SP05 under the CCB fast control (write “0” into CSR_FCC)
- reset CCB analyzer (write any data into STS_ANA)
- send 1..64 sample commands from the CCB2004

 12

- read 1..64 words from STS_ANA and verify them against expected
values. Make sure the VME_FPGA on SP05 board samples the CCB
command in the middle of the valid sample. See Section STS_ANA in
[13] for more details.

1.7. Response to External Resets

The CCB2004 response to various external resets is summarized below.

1. Power cycling sets all the TTCrx internal registers into default values (see Table 3 in
[2]) and loads “0” into all the CSRBi registers in the FPGA.

2. Hard reset from the TTC or Hard reset upon writing any data into CSRA2 or Hard
reset upon writing any data into (base address +60) DOES NOT change the state of the
TTCrx internal registers.

3. Hard reset from the TTC or Hard reset upon writing any data into CSRA2 or Hard
reset upon writing any data into (base address +60) DOES NOT change the state of the
CSRA[1..3] registers.

4. Hard reset from the TTC or Hard reset upon writing any data into CSRA2 will reset
all the CSRB registers in the FPGA into “0” if the S10-8 switch is set “on”. By default
this switch is set “off” on all production CCB2004 boards, so the Hard reset does not
affect the FPGA.

5. TTCrx reset pulse (write any data into (base+5C) address of the CCB) initiates a
FULL reset procedure of the TTCrx ASIC. All the TTCrx internal registers will be
loaded with their default values. This command works in any CCB mode. Also on this
command a 14-bit ID is loaded into the TTCrx. It must be issued during initialization for
proper operation from the TTC and I C sources. Three other possible partial TTCrx
resets:

2

 (1) Write to individual subaddress = 6 via TTC (see page 21 in [2])
 (2) I C reset (write "5" into status register, see page 30 in [2]) 2

 (3) timeout condition in the watchdog circuit (see page 33 in [2])
will load the default values into all the TTCrx internal registers WITH THE
EXCEPTION of the fine delay 1 and 2, coarse delay and the control registers.

6. FPGA “Soft Reset” (write any data into CSRA3) command enables propagation of the
selected L1A and “external trigger” signals to custom backplane (in the “FPGA” mode)
and propagation of the selected L1A to the front panel connector (in the “FPGA” or
‘Discrete Logic” modes), disables 32-bit L1A counter and resets the CSRB11[10..8] bits.
It does not affect the content of all other CSRB[1..18] registers.

 13

References

[1] CCB’2004 Specification. http://bonner-ntserver.rice.edu/cms/CCB2004P.pdf
[2] TTCrx Reference Manual. Version 3.10, August 2005. Available at
http://bonner-ntserver.rice.edu/cms/TTCrx_manual3.10.pdf
[3] TTC-VMEbus Interface TTCvi-MkII. http://bonner-ntserver.rice.edu/cms/ttcvi.pdf
[4] I2C Manual. Philips Application Note AN10216-01. March 24, 2003. Available at:
http://www.semiconductors.philips.com/acrobat_download/applicationnotes/AN10216_1.
pdf. See also The I2C-Bus Specification Version 2.1 January 2000. Available at
http://www.nxp.com/acrobat_download/literature/9398/39340011_21.pdf
[5] http://www.bonner.rice.edu/~sangjoon/CMS/EmtTests/Src/ccb2004I2CAll.cpp
[6] DS2401 Silicon Serial Number Specification. Available at http://pdfserv.maxim-
ic.com/en/ds/DS2401.pdf
[7] http://www.bonner.rice.edu/~sangjoon/CMS/EmtTests/Src/ccb2004ChipId.cpp
[8] http://bonner-ntserver.rice.edu/cms/projects.html#ccb
[9] http://direct.xilinx.com/bvdocs/publications/ds026.pdf
[10] http://www.bonner.rice.edu/~sangjoon/CMS/Jtag/
[11] http://bonner-ntserver.rice.edu/cms/ttcvx.pdf
[12] http://www-collider.physics.ucla.edu/cms/trigger/striplct.html
[13] http://www.phys.ufl.edu/~uvarov/SP05/LU-SP_Backplane_Interfaces_060701s.pdf

http://bonner-ntserver.rice.edu/cms/CCB2004P.pdf
http://bonner-ntserver.rice.edu/cms/TTCrx_manual3.10.pdf
http://bonner-ntserver.rice.edu/cms/ttcvi.pdf
http://www.semiconductors.philips.com/acrobat_download/applicationnotes/AN10216_1.pdf
http://www.semiconductors.philips.com/acrobat_download/applicationnotes/AN10216_1.pdf
http://www.nxp.com/acrobat_download/literature/9398/39340011_21.pdf
http://www.bonner.rice.edu/%7Esangjoon/CMS/EmtTests/Src/ccb2004I2CAll.cpp
http://pdfserv.maxim-ic.com/en/ds/DS2401.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2401.pdf
http://www.bonner.rice.edu/%7Esangjoon/CMS/EmtTests/Src/ccb2004ChipId.cpp
http://bonner-ntserver.rice.edu/cms/projects.html#ccb
http://direct.xilinx.com/bvdocs/publications/ds026.pdf
http://www.bonner.rice.edu/%7Esangjoon/CMS/Jtag/
http://bonner-ntserver.rice.edu/cms/ttcvx.pdf
http://www-collider.physics.ucla.edu/cms/trigger/striplct.html
http://www.phys.ufl.edu/%7Euvarov/SP05/LU-SP_Backplane_Interfaces_060701s.pdf

 14

2. Muon Port Card MPC2004

This User’s Guide should be used together with the MPC2004 Specification [1].

2.1. Initialization

After power cycling make sure that the six green LEDs on the front panel indicating
active on-board powers as well as the “DONE” LED (FPGA was successfully configured
from its EPROM) are “on”. Make sure that the “CLK40” LED on the front panel is
blinking (~7Hz). This means that the main 40Mhz clock on MPC2004 board is active.
Then:

1. Read CSR0. Make sure the CSR0[12]=1 (which means the FPGA was
successfully reloaded from the EPROM).

2. (Optional). Read CSR1 and check the date of the firmware revision.
3. Program CSR0 with the Board_ID[5..0], FPGA_Mode, CSR0[13]=1 (by default,

set the clock in the middle of the “safe window”), CSR0[14]=1 (enable all
serializers), CSR0[15]=0 (normal mode of operation) or CSR0[15]=1 (to run a
PRBS test of optical links to Sector Processor).

Note: Bit CSR0[13] is effective only if the on-board switch S2-2 is “on” and S2-1 is
“off”. Switch S2 selects the source of the 40MHz clock (fixed clock from the
CCB2004 or adjustable clock with the delay element) for the FPGA. If S2-2 is “off”
and S2-1 is “on”, the fixed CCB2004 clock is chosen. This clock is set approximately
in the middle of the “safe window”.

4. Send “Soft_Reset” (write any data to address 600004h). This command resets
all the FIFO buffers in the FPGA. It does not affect any CSR registers.
“Hard_Reset” command is intended for recovery from possible Single Event
Upsets in the LHC environment. It is not necessary to send the “Hard_Reset”
during initialization.

5. (Optional). Load CSR2 if needed. By default (after power cycling or
“Hard_Reset”), CSR2=”0”.

6. (Optional). Load CSR4 if the “transparent” mode will be used. By default (after
power cycling or “Hard_Reset”) CSR4=0, and the MPC2004 is in a “sorter”
mode.

2.2. 1-Wire Interface

1-Wire bus is intended for obtaining a unique 64-bit serial ID number from the DS2401
chip. The CSR6 should be used. Its bit assignment is identical to CSRB9 on CCB2004
(see Section 1.3 for more details), so the same program can be used to read the ID from
both the CCB2004 and MPC2004 boards.

 15

2.3. JTAG Access to FPGA and EPROM and Firmware Upgrade

One Xilinx XCV600E-8FG680 FPGA and one XC18V04 EPROM are located on the
mezzanine board. Both devices can be accessed over JTAG bus. JTAG protocol can be
emulated using write and read operations directed to CSR0[8..5]. Xilinx Parallel Cable
IV can be used as well. An on-board switch S8-1 defines which of these two options is
set. The FPGA is the 1st device in a JTAG chain, and the EPROM is the 2nd one. Files
with the .mcs and .svf extension (produced by Xilinx ISE development system) are
needed to reprogram the EPROM with the Xilinx downloading cable or VME path
respectively. The most recent versions of downloading files can be found in [2].

An IDCODE from XC18V04 EPROM can be obtained over JTAG as described in
Section 1.4. Note that the BYPASS instruction for Virtex-E FPGA is a 5-bit “11111”.
The IDCODE assigned to XC18V04 EPROM is 05026093h.

An example of the code to reprogram the XC18V04 over VME can be found in [3].

2.4. MPC2004 Self-Test

The MPC2004 is located in the peripheral crate (slot 12) and set to a “Test” mode. Data
patterns are loaded into FIFO_A, sent through the sorter unit and checked out from the
FIFO_B. All FIFO buffers are 511 words deep. The procedures are the following:

1. Write any data to address 600004h of MPC2004 (generate “Soft_Reset” to the
FPGA).

2. Initialize the CCB2004 board in the peripheral crate in “Discrete Logic” or
“FPGA External” mode and generate a “Soft_Reset” for the CCB2004 (Section
1.1 above).

3. Write data = 6A01h into CSR0 (set “Test” mode).
4. Read CSR3 and make sure the returned value is A(hex) (both FIFO_A and

FIFO_B buffers are empty).
5. Load 255 32-bit words (510 frames) of data into FIFO_A[1..9]. They will

represent the incoming LCT’s for the sorter unit.
6. Load the last word (2 frames) = 0 into all FIFO_A[1..9] buffers.
7. Send broadcast command = 30h from the TTC source to inject data from

FIFO_A into the sorter unit.
8. Read CSR3 and make sure that FIFO_A is empty and FIFO_B is not empty (if

the patterns in FIFO_A were representing valid LCT’s).
9. Read 510 words from FIFO_B[1..3] and verify they are equal to expected

values according to FIFO_A content and the sorting algorithm.
10. Read CSR3 and verify the returned value is Ah (both FIFO_A and FIFO_B

buffers are empty).

 16

2.5. TMB2005 – to – MPC2004 Data Transmission Test

This test involves the CCB2004, MPC2004 and 1..9 TMB2005 boards residing in the
EMU peripheral crate. Understanding of the TMB2005 functionality, and its internal
registers is essential for this test, see [4] for details. This test also allows to measure the
“safe window” (i.e. the fraction of the 80Mhz clock period within which the data from all
nine TMB2005 boards can be safely latched in into the MPC2004). The following
procedures are needed:

1. Program CCB2004 in the peripheral crate (slot 13):
- write data = 0 into CSRA1 (set “FPGA” mode)
- write data = FFFFh into CSRB1 (set “Internal” mode)
- write any data to CSRA3 (generate “Soft_Reset”)

2. (Optional; required only if the CCB2004 is in “Discrete Logic” mode) Initialize the
TTCrx ASIC from the TTC source as described in Section 1.1 above.

3. Program and initialize the MPC2004 (slot 12):
- write any data into address 600004h (generate “Soft_Reset” to the FPGA)
- (Optional) read back CSR3 and make sure the returned value is Ah
 (both FIFO_A and FIFO_B buffers are empty)
- write data = 4A1Eh into CSR0 (set “Trigger” mode)
- write data = 3000h into CSR2 (adjust input clock in the middle of “safe
 window”).

4. Initialize every TMB2005 board in the crate:
- write data = A11Bh into ADR_TMB_TRIG (set mpc_rx_delay[3:0]= 8)
- write data = 02FFh into ADR_MPC_INJ (enable injector start by TTC
 command; number of LCT pairs to inject = 255, or 510 frames).

5. Program LCT patterns to be injected into MPC2004 on every TMB2005 board:
a. Load the 1st frame of LCT0 into ADR_MPC_RAM_WDATA
- write data = 0 into ADR_MPC_RAM_ADR
- write data = 1 into ADR_MPC_RAM_ADR
- write data = 0 into ADR_MPC_RAM_ADR
b. Load the 2nd frame of LCT0 into ADR_MPC_RAM_WDATA
- write data = 0 into ADR_MPC_RAM_ADR
- write data = 2 into ADR_MPC_RAM_ADR
- write data = 0 into ADR_MPC_RAM_ADR
c. Load the 1st frame of LCT1 into ADR_MPC_RAM_WDATA
- write data = 0 into ADR_MPC_RAM_ADR
- write data = 4 into ADR_MPC_RAM_ADR
- write data = 0 into ADR_MPC_RAM_ADR
d. Load the 2nd frame of LCT1 into ADR_MPC_RAM_WDATA
- write data = 0 into ADR_MPC_RAM_ADR
- write data = 8 into ADR_MPC_RAM_ADR
- write data = 0 into ADR_MPC_RAM_ADR

6. Repeat step 6 for other LCT patterns (maximum 255 pairs of LCT0+LCT1). Note
the mpc_adr[7:0] in ADR_MPC_RAM_INJ should increase for every pair (four
frames) of LCTs. For example, the second pair of LCT0+LCT1 should be loaded as
shown below:

 17

a. Load the 1st frame of LCT0 into ADR_MPC_RAM_WDATA
- write data = 0100h into ADR_MPC_RAM_ADR
- write data = 0101h into ADR_MPC_RAM_ADR
- write data = 0100h into ADR_MPC_RAM_ADR

b. Load the 2nd frame of LCT0 into ADR_MPC_RAM_WDATA
- write data = 0100h into ADR_MPC_RAM_ADR
- write data = 0102h into ADR_MPC_RAM_ADR
- write data = 0100h into ADR_MPC_RAM_ADR

c. Load the 1st frame of LCT1 into ADR_MPC_RAM_WDATA
- write data = 0100h into ADR_MPC_RAM_ADR
- write data = 0104h into ADR_MPC_RAM_ADR
- write data = 0100h into ADR_MPC_RAM_ADR

d. Load the 2nd frame of LCT1 into ADR_MPC_RAM_WDATA
- write data = 0100h into ADR_MPC_RAM_ADR
- write data = 0108h into ADR_MPC_RAM_ADR
- write data = 0100h into ADR_MPC_RAM_ADR.

7. (Optional) Read back the content of MPC_RAM from every TMB2005 board. To
do this, use bits mpc_ren[3:0] of ADR_MPC_RAM_ADR instead of
mpc_wen[3:0] in the examples above. Read data from
ADR_MPC_RAM_RDATA register.

8. Send the TTC broadcast command = 24h (“Inject test patterns from the TMB”)
9. (Optional) Read CSR3 of MPC2004 and make sure FIFO_B is not empty (if valid

patterns from TMB2005 boards are expected).
10. Read FIFO_B[1..3] from MPC2004 (255 words = 510 frames) and verify the

returned values against expected, according to number of participating TMB2005
boards, content of their MPC_RAM, and sorting algorithm of the MPC2004.

11. (Optional) Read CSR3 of MPC2004 and verify the FIFO_B is empty.
12. Read “winner bits” (called mpc_accept[1:0] in the TMB manual [4]) from the

injector RAM of all participating TMB2005 boards. To do this:
a. Load ADR_MPC_RAM_ADR to be read out, starting from address 0 for

mpc_adr[7:0]; mpc_wen[3:0]=mpc_ren[3:0]=0
b. Read ADR_MPC_INJ, check bits mpc_accept[1:0] and verify that they

correspond to results of sorting for specific patterns loaded into this
TMB2005.

 Note 1: Due to TMB-to-MPC-to-TMB propagation delays, the first
 several (usually, eight) words in the injector RAM will have
 the “MPC accept bits” [11:10] (“winners”) = “0” and only the
 ninth and further words will represent the real MPC2004
 “winner” responses.
 Note 2: The four “MPC accept response delay” bits in the
 ADR_TMB_TRIG register do not affect the content of the
 injector RAM with “winner” responses. These four bits
 specify the delay (by default = 7) to latch the two
 “mpc_accept[1:0]” bits into the ADR_TMB_TRIG register.

c. Increase mpc_adr[7:0] (up to FFh) and go to step b) above.

 18

To measure the “safe window”, the value loaded into the CSR2 on Step 3, should vary
typically between 2000h to 4000h (use 2100h, 2200h… 4000h); each step corresponds to
0.25 ns. For each step we recommend to run 300..500 iterations (up to 1000 iterations on
the boundaries of the “safe window”); each iteration comprises 255 random data patterns
to be loaded into every TMB2005. The “safe window” corresponds to error-free data
transmission. Based on our experience, the average “safe window” is ~5.5 ns
(CSR2[15:8]=25h..3Bh). Note the S2-1 on MPC2004 board should be “off” and S2-2
“on” to allow this test. If S2-1 is “on” and S2-2 “off”, the clock will be automatically set
approximately in the middle of the “safe window” and the test should show no errors for
any value in CSR2. It is essential that all the nine TMB2005 boards participate in this
measurement.

2.5.1. Simplified TMB2005 – to – MPC2004 data transmission test

The goal of the test is to quickly check data transmission (2 LCTs only) from one of nine
TMBs in the fully loaded peripheral crate. The following procedures are needed:

1. Program CCB2004 in the peripheral crate (slot 13):
- write data = 0 into CSRA1 (set “FPGA” mode)
- write data = 1 into CSRB1 (set “Internal” mode)

2. Program and initialize the MPC2004 (slot 12):
- write any data into address 600004h (generate “Soft_Reset” to the FPGA)
- write data = 6A1Eh into CSR0 (set “Trigger” mode, set input clock in the
 middle of the “safe window”).

3. Enable sending data to MPC from one selected TMBn (n=1..9), disable all others:
- write data = A11Bh into ADR_TMB_TRIG (set mpc_rx_delay[3:0]=8)
 register of the selected TMB
- write data = 020Ah into ADR_MPC_INJ (enable injector start by TTC
 command; number of LCT pairs to inject = 10) of the selected TMB
- write data = 0 into ADR_MPC_INJ (disable injector start by TTC
 command; number of LCT pairs to inject = 0) of all other TMBs

4. Program LCT patterns to be injected into the MPC2004 on selected TMB2005
board: For the first word:

a. Load the 1st frame of LCT0 = AAAAh into ADR_MPC_RAM_WDATA
- write data = 0 into ADR_MPC_RAM_ADR
- write data = 1 into ADR_MPC_RAM_ADR
- write data = 0 into ADR_MPC_RAM_ADR
b. Load the 2nd frame of LCT0 = 5555h into ADR_MPC_RAM_WDATA
- write data = 0 into ADR_MPC_RAM_ADR
- write data = 2 into ADR_MPC_RAM_ADR
- write data = 0 into ADR_MPC_RAM_ADR
c. Load the 1st frame of LCT1 = 9999h into ADR_MPC_RAM_WDATA
- write data = 0 into ADR_MPC_RAM_ADR
- write data = 4 into ADR_MPC_RAM_ADR
- write data = 0 into ADR_MPC_RAM_ADR
d. Load the 2nd frame of LCT1 = 4444h into ADR_MPC_RAM_WDATA
- write data = 0 into ADR_MPC_RAM_ADR

 19

- write data = 8 into ADR_MPC_RAM_ADR
- write data = 0 into ADR_MPC_RAM_ADR

 5. Load the other 9 words with data=0 (increase address for every other word)
6. Write data = 90h into address 680022h of CCB (send the TTC command = 24h
(“Inject test patterns from the TMB”). Make sure that two LEDs on the front panel
of MPC (MUON1 and MUON2) are blinking.
7. Read data from address 6000A4 (FIFO_B1) of MPC. Make sure it is = AAAAh.

Read data from address 6000A4 (FIFO_B1) of MPC. Make sure it is = 5555h.
 Read data from address 6000A6 (FIFO_B2) of MPC. Make sure it is = 9999h.
 Read data from address 6000A6 (FIFO_B2) of MPC. Make sure it is = 4444h.
 Read data from address 6000A8 (FIFO_B3) of MPC. Make sure it is = 0.
 Read data from address 6000A8 (FIFO_B3) of MPC. Make sure it is = 0.

Make sure the FIFO_B buffer is empty at this point (“FBEM” LED is on).
 8. Read ADR_TMB_TRIG (86) from selected TMB2005. Make sure data=A71Bh
(two bits mpc_accept[1:0]=1 were added to initial value of A11Bh).

9. Read “winner bits” from the injector RAM of the selected TMB2005 board:
a. Load ADR_MPC_RAM_ADR to be read out, starting from address 0 for

mpc_adr[7:0]; mpc_wen[3:0]=mpc_ren[3:0]=0
b. Read ADR_MPC_INJ and check bits mpc_accept[1:0]. We suggest to

read 10 words. Due to TMB-to-MPC-toTMB propagation delays the first
few (usually eight) words will have the “winner bits” empty. The results
should look like this:

- word 1: 20Ah
- word 2: 20Ah
- word 3: 20Ah
- word 4: 20Ah
- word 5: 20Ah
- word 6: 20Ah
- word 7: 20Ah
- word 8: 20Ah
- word 9: E0Ah (both “winner bits” present here)
- word 10: 20Ah.

2.6. Test of optical links with the PRBS patterns

The TLK2501 transceiver has an embedded pseudo-random bit stream (PRBS) generator
that makes testing of optical links between the MPC2004 and SP05 boards [5] quite
simple. The following steps are required:

1. Establish connection (all three links) between the MPC2004 under the test and
SP05.

2. Write data = CA00h into CSR0 of MPC2004 (program PRBS mode).
3. Write data = 50h into CSR_LNK register of SP05 for all three links under test.
4. Write data = 1Fh into ACT_LCR to reset all error counters on SP05 board for

selected links.
5. Make sure that three yellow LEDs on the front panel of the SP05 for selected

links are “on”. At this point the PRBS is running continuously.

 20

6. Read three CSR_LNK registers of SP05 for selected links in a loop and make
sure the returned values are 750h (all error counters = 0). See more details on
CSR_LNK register in the SP05 manual [5].

2.7. Test of optical links with the programmable data patterns

The MPC2004 is located in the peripheral crate, and the SP05 board is located in the
Track Finder crate. The CCB2004 boards in both crates are connected to the TTC clock
and command source (TTCvi or TTCci board) in one of these two crates or in a separate
crate. The TMB boards are not involved in this test, so the MPC2004 is in a ‘Test” mode.

1. Program CCB2004 in both crates:
- Initialize both CCB2004 boards in the peripheral and Track Finder crates
 as described in Section 1.1 of this Guide
- Set both CCB2004 into “Discrete Logic” mode (load “1” into CSRA1)
- Send “Soft_Reset” to both CCB2004 (write any data to Base+4 address)
- Make sure the TTCrx on both CCB2004 boards are “Ready” and OPLL

are “Locked” (check corresponding LEDs on the front panel or/and read
CSRA3).

2. Establish connection (all three links) between the MPC2004 under test and the
SP05 (use only one triple link out of F1..F5, typically the bottom F1). Optical
fibers can be of different length.

3. Program MPC2004 in the peripheral crate:
- send “Soft_Reset” to FPGA on MPC2004 (write any data into 600004h)
- write data = 6A1Fh into CSR0 (note: Board_ID[5:0] can be any)
- load 255 programmable LCT patterns (510 frames) into FIFO_A[9..1]

 - load the last pattern = 0 into all FIFO_A[9..1] buffers.
4. Program SP05 in the Track Finder crate:

- write data = 0 into CSR_FCC VM (set SP05 to CCB control)
- write data = 10h into CSR_LNK FA MA (enable all three links)
- write data = 9050h into CSR_SFC VM (set delay of spy FIFO write)
- write data = 11FFh into CSR_SFC FA MA (set how many words to
 expect)
- write data = 31FFh into CSR_SFC SP (set spy FIFO window)
- write data = 4h into ACT_XFR FA MA (reset spy FIFO)
- write data = 4h into ACT_XFR SP (reset spy FIFO)
- write data = 6Dh into CSR_AFD FA MA (set alignment FIFO read delay)

5. Send L1Reset broadcast command (=3h) from the TTC source to both CCB2004
boards.

6. Send “Inject patterns from MPC” command (=30h) from the TTC source to
both CCB2004 boards.

7. Read 255 patterns (510 frames) from FIFO_B[3..1] on MPC2004 and make sure
they satisfy with the sorting criteria.

8. Read 255 patterns (510 frames) from DAT_SF F1 M1/M2/M3 (for each muon)
and make sure they satisfy with the sorting criteria and coincide with the data read
out of FIFO_B[3..1] on MPC2004.

9. Read CSR_SF spy FIFO status and make sure the spy FIFO is empty (SFEF=1).

 21

10. Read CSR_BID and make sure the MPC_LINK_ID[7:0] is equal to expected
number (MPC_ID[5:0] as pre-programmed into the CSR0 of MPC2004 and
LINK_ID[1:0] as hard-wired on SP05).

Note: You will probably need to adjust the delay of spy FIFO write (in CSR_SFC
VM) and the delay of alignment FIFO read (in CSR_AFD FA).

References

[1] MPC2004 Specification. http://bonner-ntserver.rice.edu/cms/MPC2004P.pdf
[2] http://bonner-ntserver.rice.edu/cms/projects.html#mpc
[3] http://www.bonner.rice.edu/~sangjoon/CMS/Jtag/
[4] http://www-collider.physics.ucla.edu/cms/trigger/striplct.html
[5] http://www.phys.ufl.edu/~uvarov/SP05/LU-SP_Backplane_Interfaces_060701s.pdf,
 See also http://www.phys.ufl.edu/~uvarov/SP05/SP05.htm

3. Muon Sorter MS2005

This User’s Guide should be used together with the MS2005 Specification [1].

3.1. Initialization

After power cycling make sure that the four green LEDs on the front panel indicating
active on-board powers as well as the “DONE” LED (FPGA was successfully configured
from its EPROM) are “on”. Make sure that the “CLK40” LED on the front panel is
blinking (~7Hz). This means that the main 40MHz clock on MS2005 board is active.
Then:

1. Write data = 12A0h into CSR0 (set “Trigger” mode).
2. (Optional) Read CSR4 and check the date of the firmware revision.
3. Make sure the CSR3[0]=”1” (FPGA was configured and locked successfully).
4. Send “Soft_Reset” (write any data to address 700018h). This command resets

all the FIFO buffers in the FPGA. It does not affect any CSR registers.
“Hard_Reset” command is intended for recovery from possible Single Event
Upsets in the LHC environment. It is not necessary to send ‘Hard_Reset” during
initialization. After power cycling the “Hard_Reset” is disabled. To enable it, the
CSR4[1] should be set to “1”.

5. Program CSR9[11..0] to enable or disable input data streams from a specific
Sector Processor(s) in the Track Finder crate. After power cycling all the SP’s are
enabled.

6. Program CSR8. All the 12 data streams from SP1..SP12 are latched into the main
Xilinx FPGA on a common 80Mhz clock that is derived from the Master 40Mhz
provided by the CCB2004 board. This clock is produced inside the FPGA using
its Digital Control Module (DCM, see [2]) and must be set in the middle of the
“safe window” for all 12 SP sources. Fine clock adjustments within the 12.5 ns

http://bonner-ntserver.rice.edu/cms/MPC2004P.pdf
http://bonner-ntserver.rice.edu/cms/projects.html#mpc
http://www.bonner.rice.edu/%7Esangjoon/CMS/Jtag/
http://www-collider.physics.ucla.edu/cms/trigger/striplct.html
http://www.phys.ufl.edu/%7Euvarov/SP05/LU-SP_Backplane_Interfaces_060701s.pdf
http://www.phys.ufl.edu/%7Euvarov/SP05/SP05.htm

 22

clock period can be done using two independent methods. The first (A) method
is preferred.

A. The Master 40Mhz clock from the CCB2004 passes through the 3D7408-
025 [3] delay chip before it reaches the FPGA. The delay is
programmable with the CSR8[7..0] and the minimal step of adjustment is
250 ps. This delay value can be programmed in such a way that the
80Mhz clock produced from the delayed 40Mhz Master clock will be set
exactly in the middle of the “safe window”. It was measured that the “safe
window” corresponds to CSR8=78..101(dec), so the recommended setting
is CSR8=89(dec)=59h. Then it is not necessary to program the DCM1
which delay is set to “0” automatically on power cycling.

B. For a fixed value of CSR8, the resulting 80Mhz clock within the FPGA
can be delayed using the DCM1 with a 100 ps precision and set in the
middle of the “safe window”. It is recommended to program
CSR8[7..0]=0 (this is also a default value after power cycling). Then,
according to our measurements, the “safe window” corresponds to DCM1
settings between –66 and +7. The middle of the “safe window”
corresponds to DCM1 setting of –30. The procedure to program the
DCM1 with value = “-30” is the following:

B.1. Write “0” to address 700160h (set up fine phase adjustment for DCM1)
B.2. Read CSR5 and make sure the CSR5[0]=1 (clock de-skew was done)
B.3. Write any data to address 700164h (reset PSDONE status bit)
B.4. Repeat B.1.-B.3. 29 times.

7. Write any data to 70016Ah address (set “winner bit” mode).
8. Load all Rank and Phi LUT RAM’s and (optional) read them back for

verification.

3.2. JTAG Access to FPGA and EPROM and Firmware Upgrade

The Xilinx XCR3128 PLD on the main MS2005 board performs the VME A24D16
slave functions and controls the operation of the Fairchild SCANPSC100 controller [4].
This controller supports VME accesses to the Xilinx XC2V4000-5FF1152C FPGA and
four XC18V04 EPROM’s located on the mezzanine board.

The PLD can be programmed over Xilinx Parallel Cable IV only using an on-board 14-
pin connector P11. File with the .jed extension for the PLD can be found in [5]. Four
EPROM’s can be programmed over Parallel Cable IV as well using another on-board 14-
pin connector P10. Note that CSR4[0] should be set to “1” to enable the SCANPSC100
controller. By default the CSR4[0]=0 and the cable connection is enabled.

Files with the .mcs and .svf extensions (produced by Xilinx ISE development system)
are needed to reprogram the EPROM with the Xilinx Parallel Cable and VME path
respectively. The most recent versions can be found in [5].

To reprogram the EPROMs over VME the following steps are needed:

1. Write data = 1 into CSR4.

 23

2. Use LoadFPGAconsole.exe, which is a UF program to load
the SP firmware, with the following flags:

 LoadFPGAconsole.exe -s14 -j0 -x[SP xml file] [MS svf file]

3.3. MS2005 Self-Test

The MS2005 is set to “Test” mode. Data patterns are loaded into FIFO_A, sent through
the sorter unit and checked out from FIFO_C and FIFO_B. All FIFO buffers are 511
words deep. An external cable can be connected between one of the output connectors on
the front panel and the P12 connector on the main board. Then the results of sorting after
LUT conversion will be stored in FIFO_D. The required procedures are the following:

1. Write any data into address 700018h (generate “Soft_Reset” for the FPGA).
2. Initialize the CCB2004 board in the Track Finder crate in “Discrete Logic” or

“FPGA External” mode and generate a “Soft_Reset” for the CCB2004.
3. Write data = A2A1h into CSR0 (address 700158h).
4. Load the Rank+Phi LUT content for all four muons (see Section 3.1 in [1]):

- use addresses 700400h..7007FEh for LUT corresponding to muon1
- use addresses 700800h..7007BEh for LUT corresponding to muon2
- use addresses 700C00h..7007FEh for LUT corresponding to muon3
- use addresses 701000h..7013FEh for LUT corresponding to muon4

5. Read CSR1 and make sure the returned value is AAh (all FIFO buffers are
empty).

6. Load 255 32-bit words (510 frames) of data into FIFO_A[1..12]. They will
represent the 255 incoming muon patterns for the sorter unit.

7. Load the last word (2 frames) “0” into all FIFO_A[1..12] buffers.
8. Send the “Inject patterns from MS” broadcast command (=31h) from the TTC

source (or write any data to address 70015Eh to emulate this command).
9. Read CSR1 and make sure that FIFO_A is empty and the other FIFO’s are not

empty (if the patterns in FIFO_A were representing valid muons).
10. Read 510 32-bit words of data from FIFO_C[1..4] and make sure they are equal

to expected values according to FIFO_A content and the sorting algorithm.
11. Read 510 32-bit words of data from FIFO_B[1..4] and make sure they are equal

to expected values according to FIFO_A content, the sorting algorithm and LUT
content.

12. Read 510 32-bit words of data from FIFO_D and make sure they are equal to
expected values according to FIFO_A content, the sorting algorithm, LUT
content and required data format conversion (see Notes to Table 11 in [1]) for the
selected connection between the front panel output and P12 connector.

13. Read CSR1 and make sure the returned value is AAh (all the FIFO buffers are
empty).

3.4. MS2005 – to – GMT Data Transmission Test

The test involves the MS2005 board residing in the CSC Track Finder crate and the
Global Muon Trigger (GMT) receiver board residing in the GMT/GT crate [6]. The clock

 24

and commands should arrive to both crates from the same TTC source. In order to
simplify the MS2005 – to – GMT testing procedures, we have implemented a dedicated
RAM buffers in the main MS2005 FPGA. These buffers keep patterns representing the
four output muons being sent to the GMT receiver (see Section 6 in [1]). The procedures
to run a MS2005 – to – GMT test using these RAM buffers are the following:

1. Write any data into address 700018h (generate “Soft_Reset” for the FPGA).
2. Initialize the CCB2004 board in the TF crate in “Discrete Logic” or “FPGA

External” mode and generate a “Soft_Reset” for the CCB2004.
3. Initialize the GMT receiver board as needed.
4. Write data = A4A1h into CSR0 address 700158h (set CSR0[10]=1 to use the

RAM buffers as data sources for the GMT receiver).
5. Write data = 1 into CSR6[7..0] to select the 1st RAM buffer and select the

command source in CSR7[11..8].
6. Write data = 0 into RAM address counter (address 700178h).
7. Write 16-bit test pattern into address 70017Ch.
8. Increment (up to 1FFh) the address, load it into address counter and go to step 7

above.
9. Load the other RAM buffers (use values CSR6[7..0] = 2, 4, 8, 16, 32, 64, 128)

and go to step 6 above.
10. (Optional) Read back all RAM buffers for verification.
11. Send BC0 or BCntRes broadcast command from the TTC source, depending on

your choice in CSR6[11..8]. Then all the 512 patterns from all RAM buffers (with
the exception of bits [31..30]) will be sent out without conversion to the GMT
receiver. The input buffers on GMT receiver board are expected to by
synchronized with this command.

12. Verify the content of the input buffers on GMT receiver board against expected
values.

3.5. SP05 - to - MS2005 Data Transmission Test

The simplest option is to test the connection between one SP05 board and the MS2005.
The most complete test would involve all 12 SP05 boards residing in the TF crate. The
data is sent from the Test FIFOs on the SP05 board (main FPGA) and checked from the
FIFO_C of the MS2005 and (optionally) three spy buffers on SP05 board: DAT_SF,
DAT_SFE and DAT_SFM. The CCB2004 receives the clock and broadcast commands
from the TTC source. Understanding of the SP05 functionality, external interfaces and
internal registers is essential for this test, see [7] for details. This test also allows to
measure the “safe window” (i.e. the fraction of the 80Mhz clock period within which the
data from all 12 SP05 boards can be safely latched in into the M2005). The following
procedures are required to run the test:

1. Program CCB2004 in the TF crate (slot 12):
- write data = 1 into CSRA1 (set “Discrete Logic” mode)
- write any data into CSRA3 (generate “Soft_Reset”)

2. Initialize the TTCrx from the TTC source as described in Section 1.1 above.

 25

3. Program MS2005 in the TF crate (slot 14):
- write any data into address 700018h (generate “Soft_Reset” to the FPGA)
- read CSR1 (FIFO status) and make sure the returned value is AAh (all
 FIFO buffers are empty)
- write data = 12A1h into CSR0 (set “Test” mode temporary for the

duration of the SP initialization procedures)
- (Optional) write data = 0 into CSR9 (enable inputs from all SP05 boards)
- write data = 59h into CSR8 (set input clock for latching data from all
 SP05 boards in the middle of the “safe window”)
- write any data to address 70016Ah (set “winner bit” mode).

4. Program SP05 board(s) in the TF crate (slots 6..11 and 16..21):
- write data = 1Fh into ACT_XFR FA MA (reset all FIFO buffers, all
 muons, all front FPGA’s)
- write data = 1Fh into ACT_XFR SP MA (reset all FIFO buffers, all
 muons)
- write data = 100h into CSR_FCC VM MA (set Fast Control Mode to

VME)
- write data = 00C8h into ACT_FCC VM MA (reset bunch crossing

counter with the command = 32h)
- Load Pt LUT content into DAT_PT (data = 0 for address = 0)
- (Optional) read back DAT_PT for verification
- (Optional) write data = FFFFh into ACT_ACR SP MA (reset various
 Local/Global Phi/Eta/DT LUT address counters)
- write data = 11FFh into CSR_SFC SP MA (spy FIFO window = 512
 bunch crossings)
- write data = 39FFh into CSR_TFC SP MA (will inject test patterns for
 512 bunch crossings from the main FPGA on the next FC_TFRUN
 command, enable injecting EMU test data from DAT_TFE, enable
 injecting timing bits BXN0/BC0 along with data patterns)
- (Optional) read back CSR_TFC SP MA for verification
- write data = A000h into CSR_SFC VM MA (persistent mode to spy on
 CCB_TPSP; spy FIFO starts writing data immediately after the requested
 event)
- write data = A000h into CSR_TFC VM MA (persistent mode to inject
 data on all events that follow; test FIFO starts injecting data immediately

 after the requested event).
5. Begin test iteration:

- load 512 test patterns (2 frames each) into DAT_TF SP M1
- load 512 test patterns (2 frames each) into DAT_TF SP M2
- load 512 test patterns (2 frames each) into DAT_TF SP M3
- load 512 test patterns (2 frames each) into DAT_TFE SP MA
- (Optional) read back CSR_TF SP and make sure the returned value is
 8400h (Test FIFO is full)
- write data = 0 into CSR_FCC VM MA (set Fast Control Mode to CCB)
- write data = 12A0h into CSR0 of MS (set “Trigger” mode)
- write data = 2 into CSR_MWC SP MA (enable MS interface outputs, all

 26

 SP’s).
6. Send “Start trigger” broadcast command (=6) from the TTC source.
7. Send BC0 broadcast command (=1) from the TTC source.
8. Send “Inject data from SP” broadcast command (=2Fh) from the TTC source.
9. Send “Stop trigger” broadcast command (=7) from the TTC source.
10. Write data = 0 into CSR_FCC VM MA of SP (set Fast Control Mode to VME).
11. Write data = 12A1h into CSR0 of MS (return to “Test” mode).
12. Write data = 8002h into CSR_MWC SP MA (disable MS output drivers, all

SP’s).
13. (Optional) Read CSR1 from the MS2005 and verify that the FIFO_C is not

empty (if the SP’s were expecting to send valid muon patterns)
14. (Optional) Read CSR_TF SP and make sure the returned value is 4000h (test

FIFO is empty).
15. (Optional) Read CSR_SFM SP M1/2/3 and make sure the MS spy FIFO is not

empty (if the SP05 was sending valid patterns) or full (returned value = 8400h, if
all 512 patterns were valid).

16. Read 512 words (two frames each) from DAT_SF M[1..3] and verify them
against the data loaded into test FIFO DAT_TF for every muon.

17. Read 512 words from FIFO_C[1..4] and compare with expected values, taking
into account the number of SP05 sources in the TF crate, Pt LUT content, sorting
algorithm. Note the BC0 and BXN0 bits are treated separately (see description of
DAT_TF in the SP05 manual).

18. Read 512 words (two frames each) from DAT_SFE SP MA and verify the EMU
spy FIFO content against the data preloaded into EMU test FIFO DAT_TFE SP
MA.

19. Read 512 words (two frames each) from DAT_SFM M[1..3] and make sure the
MS_ID[3..1] bits in the first frame correspond to expected results of sorting.
Verify the BXN0 and BC0 bits according to content of the source FIFO
DAT_TFE.

Note: you will probably need to adjust the CSR0[15:12] bits (MS2005; delay of
winner bits on MS board before they are sent to SP).
20. Go to step 5, load another set of test patterns into DAT_TF and DAT_TFE and

repeat the iteration.

To measure the “safe window”, the value loaded into the CSR8 on Step 3, should vary
typically between 44h and 70h (use 44h, 45h… 70h); each step corresponds to 0.25 ns.
For each step we recommend to run 300..500 iterations (up to 1000 iterations on the
boundaries of the “safe window”); each iteration comprises 512 random data patterns to
be loaded into every SP05. The “safe window” corresponds to error-free data
transmission. Based on our experience, the average “safe window” is ~6.5 ns
(CSR8=4Ch..66h). It is essential that all the twelve SP05 boards participate in this
measurement.

 27

3.6. How to generate the MS_L1A_Request to Track Finder
backplane

Below is a sequence of steps required to generate the L1A_Request to the CCB2004 in a
standalone mode (without valid inputs from Sector Processors). This procedure might be
useful for debugging purposes for local triggering.

1. Write data = 11Fh into CSRA1 of CCB2004 (“Discrete Logic” mode)
2. Write data = DFBCh into CSRB1 of CCB2004 (enable only the

MS_L1A_Request source)
3. Write data = 0 to CCB2004 base+96h address (enable L1A counter)
4. Write data = 0 to CCB2004 base+94h address (reset L1A counter to 0)
5. Write data = 0 to MS2005 base+18h address (soft reset of MS2005)
6. Write data = 200h to MS2005 base+158h address (enable MS_L1A_request in

CSR0)
7. Read CCB2004 L1A counter (base+90h address) and make sure there is “0”
8. Write data=FFFFh into MS2005 base+400h address (Rank and Phi LUT address

0 for Muon 1)
9. Write data=0 into MS2005 base+400h address (Rank and Phi LUT address 0 for

Muon 1). Steps 8-9 allow to generate a single L1A_Request from the Muon
Sorter. This request will also propagate to the front panel connector P4 (pins
23/24) of the CCB2004. “Muon_1” LED on the front panel of MS2005 should be
flashing once).

10. Read CCB2004 L1A counter (base+90h address) and make sure it is = 1.

4. Data Transmission Chain Tests

The chain tests involve the following boards:

- CCB2004, MPC2004, up to 9 TMB2005 residing in the peripheral crate
- CCB2004, MS2005 and up to 12 SP05 in the Track Finder crate
- TTC source boards (for example, TTCvi/TTCvx, or TTCci) residing in the

TF or separate VME crate
- (Optional) GMT receiver board residing in the GMT/GT crate

The most typical hardware configuration consists of two crates: peripheral with the
CCB2004, MPC2004 and nine TMB2005 boards, and the Track Finder with the
CCB2004, MS2005 and one SP05 board (Fig.2). The TTCvi and TTCvx modules are
located in the TF crate. Three optical fibers connect the outputs of the MPC2004 with one
triple muon input (usually, F1, the lowest part) of the SP05. The chain test may be
divided into three stages:

(1) from the TMB2005 through MPC2004 to the input FIFO on
SP05;

(2) from the input of the SP05 to output of the SP05
(3) from the output of SP05 to the output of MS2005 (input of

GMT).

 28

Figure 2: Chain Test in the Peripheral and Track Finder crates

At a first stage of the chain test, the testing patterns are loaded into all TMB2005 boards,
sent to MPC2004 and verified from the output FIFO_B buffer of MPC2004 and from
input spy FIFO buffers DAT_SF FA on SP05. The steps required to perform this test are
the following (see Sections 2.4 and 2.6 for more details):

1. Program and initialize the CCB2004 boards in both crates in “Discrete Logic” or
“FPGA External” mode as described in Section 1.1.

2. Program and initialize the SP05 as described in Step 4, Section 2.6. Note the
delay values SFD[9:0] in CSR_SFC VM and AFD[6:0] in CSR_AFD FA MA
may be different from those listed in Section 2.7. Also note the bits SFM and
SFRT in CSR_SFC VM should be “1” and SFRM=0 to allow data to be captured
on the next CCB_TPTMB broadcast command.

3. Program and initialize the MPC2004 board (Step 3, Section 2.5).
4. Program and initialize all TMB2005 board(s) (Steps 4-7, Section 2.5; load 255

pairs of LCT0+LCT1 into MPC RAM).
5. Send L1Reset broadcast command (=3h) from the TTC source to both CCB2004

boards for timing adjustments on SP05 inputs.
6. Send “Inject patterns from TMB” command (=24h) from the TTC source to

both CCB2004 boards.
7. Read 255 words (510 frames) from FIFO_B[3..1] on MPC2004 and make sure

they satisfy with the sorting criteria.
8. Read 255 words (510 frames) from DAT_SF F1 M1/M2/M3 (for each muon)

and make sure they satisfy with the sorting criteria and are equal to ones read out
from FIFO_B[3..1] on MPC2004.

9. Read CSR_SF spy FIFO status and verify that the spy FIFO is empty (SFEF=1).
10. Read CSR_BID and verify that the MPC_LINK_ID[7:0] is equal to expected

number (MPC_ID[5:0] as pre-programmed into the CSR0 of MPC2004 and
LINK_ID[1:0] as hard-wired on SP05).

11. Read “winner bits” from participating TMB2005 boards as described in Step 12,
Section 2.5.

 29

The second stage involves the SP05 only. The testing of SP05 internal functionality is out
of scope of this Guide. The third stage is described in Section 3.5. Some examples of the
C++ programs to run the first and third stages of the chain test can be found in [1].

References

[1] http://www.bonner.rice.edu/~sangjoon/CMS/EmtTests/Src/

History

12/06/2006. Section 2.3 was added.
01/10/2007. Major additions to Sections 2 and 3.
01/19/2007. Minor additions to Section 3.5. Sections 1.2 and 1.4 were expanded, Sections
 1.5 and 4 added.
02/06/2007. Appendix was added.
02/27/2007. Minor changes in Section 1.1. Section 1.6 was added.
02/21/2008. Corrections in Section 1.2
03/06/2008. Section 1.7 was added.
05/01/2008. Minor changes in Section 1.1.
10/01/2008. Minor changes in p.11 of Section 1.1.
05/11/2009. Section 3.6 was added.
08/05/2009. Corrections in Section 3.4.
10/13/2009. Section 2.5.1 was added. Minor corrections in Section 2.5.

http://www.bonner.rice.edu/%7Esangjoon/CMS/EmtTests/Src/

 30

Appendix

1. Peripheral Backplane

The picture of the EMU custom peripheral 9U backplane designed at the University of
Florida, Gainesville (revision 3, production version, front view) is shown on Fig.1. The
upper part complies with the VME64x protocol that uses a unique geographical address
for every slot 1..21. The base 24-bit addresses according to geographical addressing
scheme board are listed in Table 1 for every slot. All the other connectors are female
type metric (2 mm) 5- or 7-row Zpack (Example is shown on Fig.2). Pin assignment of
the CCB, MPC, TMB and DMB backplane connectors is given in Tables 2-5
respectively.

Figure 1: EMU Custom Peripheral Backplane, front view

 31

Table 1: Geographical Addressing in the EMU Peripheral Crate
VME
Slot

Board Base
Address

VME
Slot

Board Base
Address

VME
Slot

Board Base
Address

1 CC 8 TMB4 400000h 15 DMB6 780000h
2 TMB1 100000h 9 DMB4 480000h 16 TMB7 800000h
3 DMB1 180000h 10 TMB5 500000h 17 DMB7 880000h
4 TMB2 200000h 11 DMB5 580000h 18 TMB8 900000h
5 DMB2 280000h 12 MPC 600000h 19 DMB8 980000h
6 TMB3 300000h 13 CCB 680000h 20 TMB9 A00000h
7 DMB3 380000h 14 TMB6 700000h 21 DMB9 A80000h

Power distribution in the EMU peripheral backplane is different from standard VME
backplane. Only +3.3V (as specified in the VME64x document for pins D12, D14, D16,
D18, D20, D22, D24, D26, D28, D30) and +5.0V (pins A32, B32, C32) are provided.
+12V and –12V powers are not provided. The power comes from the Crate Regulator
Board (CRB) located behind the J1/P1 portion of the custom backplane. The CRB
provides +3.3V and +5.0V powers individually to each slot in the crate. In addition, the
CRB provides two sources of +1.5V required for the GTLP terminators: one for the MPC
and another for all other boards (CCB, TMB1-9, DMB1-9). The +3.3V power for RAT1-
9 cards comes from the corresponding TMB board (Table 4, connector 4). The CRB
output voltages can be monitored over CAN bus. Some of the voltages can be monitored
on a TMB2005 board accessing the ADR_ADC register. An example of the program is
given in [2].

Figure 2: Pin assignment of the Zpack77 connector

 32

Table 2: CCB Slot

CLK-DMB8

ccb_data_5

ccb_cmd_5

dmb_cfg_done_6
alct_cfg_done_7

mpc_hard_reset
mpc_reserved_1

dmb_reserved_out_3

tmb_cfg_done_2

CLK+MPC

CLK-TMB4

ccb_data_0

alct_cfg_done_6

CLK-TMB5 CLK+DMB6

X2E

ZPack125

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb_cfg_done_8

tmb_reserved_in_3

ccb_reserved_0

clct_status_0

mpc_reserved_0

dmb_cfg_done_8

CLK+DMB8

ccb_data_7

dmb_cfg_done_5

clct_status_1

ccb_reserved_3

alct_cfg_done_2

CLK-DMB7

tmb_l1a_release

ccb_reserved_2

X2B

ZPack125

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb_cfg_done_6

alct_status_4

CLK-MPC

tmb_reserved_in_0

CLK-DMB3

dmb_cfg_done_2

ccb_cmd_0

tmb_cfg_done_9

CLK-TMB3
CLK-DMB2

ccb_reserved_4

dmb_hard_reset

ccb_reserved_1

alct_cfg_done_5

CLK-TMB9
CLK+DMB9

clct_status_6

CLK+TMB6CLK-DMB5

tmb_reserved_out_2

X2D

ZPack125

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

dmb_cfeb_calibrate_1

tmb_reserved_in_1

mpc_reserved_2

CLK80-MPCCLK80+MPC

CLK+TMB1

dmb_reserved_2

ccb_cmd_4

Clock_Enable

ccb_data_1

alct_status_8

tmb_reserved_out_1

alct_status_2

tmb_reserved_0

dmb_reserved_in_1

tmb_reserved_in_4

ccb_l1accept

X2C

ZPack125

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

clct_status_2

dmb_reserved_in_2

ccb_data_strobe

alct_adb_pulse_sync

CLK+DMB5

ccb_data_3

CLK+DMB1
X1A

ZPack125

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ccb_bc0

mpc_cfg_done

clct_status_4

dmb_cfg_done_4

CLK+DMB3

clct_status_7

dmb_reserved_out_1

alct_status_1

dmb_reserved_1

dmb_cfg_done_9

alct_hard_reset

dmb_reserved_out_4

tmb_cfg_done_3

tmb_l1a_request

CLK+TMB4

CLK-TMB2

1.5V

X1B

ZPack125

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

dmb_reserved_out_2

dmb_cfg_done_1

CLK+TMB9
CLK+TMB2

alct_status_0

CLK+DMB7

CLK+TMB3

alct_external_trigger

clct_status_5

CLK+DMB4

tmb_cfg_done_7

CLK-DMB6

tmb_reserved_out_0

tmb_cfg_done_4

tmb_hard_reset

alct_status_5

dmb_cfeb_calibrate_2

X1C

ZPack125

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

dmb_l1a_release

ccb_data_4

CLK-TMB6

alct_status_6

dmb_cfeb_calibrate_0

alct_adb_pulse_async

ccb_cmd_2

alct_status_3

ccb_bcntres

dmb_reserved_out_0

dmb_cfg_done_3

alct_cfg_done_8

clct_status_8

CLK-DMB9

X1D

ZPack125

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

CLK-TMB7

alct_cfg_done_1

CLK-TMB1

ccb_evcntres

tmb_reserved_1

dmb_reserved_in_0

ccb_data_2
ccb_cmd_strobe

CLK-TMB8

clct_external_trigger

tmb_cfg_done_5

ccb_data_6

CLK-DMB1

ccb_cmd_3

tmb_cfg_done_1

X1E

ZPack125

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

alct_status_7

CLK+TMB5

dmb_reserved_0

ccb_cmd_1

CLK+TMB7CLK-DMB4

alct_cfg_done_3
dmb_cfg_done_7

clct_status_3

alct_cfg_done_9

CLK+DMB2

CLK+TMB8

X2A

ZPack125

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb_reserved_in_2

alct_cfg_done_4

All bussed GTLP signals (full list is given in Table 3A of the CCB Specification [1])
are terminated on both ends of the peripheral backplane. All 40MHz and 80MHz
point-to-point signals are terminated on receiving boards: 100 Ohm to +1.5V for
GTLP, 100 Ohm between the complementary signals for LVDS (40MHz and 80MHz
clocks from the CCB).

 33

Table 3: MPC Slot

tmb9_8

tmb1_5

tmb7_17

tmb3_2

tmb8_28

tmb4_18

tmb1_20

tmb7_23

tmb1_0

ccb_evcntres

tmb4_2

tmb6_26

tmb3_4

tmb7_12

tmb8_26

tmb5_1

X3A

ZPack125

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb8_21

tmb7_25

tmb4_14

tmb8_15

tmb4_7

tmb4_13

tmb6_0

X1E

ZPack125

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb2_11

tmb1_19

tmb4_25

tmb1_1

tmb5_8

tmb7_29

tmb6_27

tmb1_25

tmb4_1

tmb7_16

X4E

ZPack125

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb5_5

tmb1_18

tmb7_24

X3B

ZPack125

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb4_30

tmb8_24

X4C

ZPack125

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb7_19

tmb3_12

tmb9_13

tmb2_30

tmb1_17

tmb4_27

tmb1_11

tmb6_10

tmb8_0

tmb4_23

tmb1_22

tmb3_22

ccb_reserved_0

tmb6_29

tmb6_18

tmb4_29

tmb5_27

tmb3_28

tmb9_2

tmb8_17

tmb8_29

tmb5_9

tmb5_25

tmb3_29

X1B

ZPack125

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb1_31

ccb_reserved_1

tmb3_10

X2C

ZPack55

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11

1
2
3
4
5
6
7
8
9

10
11

tmb9_17

tmb8_31

tmb5_11

tmb8_13

mpc_reserved_1

tmb5_3

tmb8_27

tmb7_21

tmb9_12

tmb1_27

tmb9_27

tmb4_21

tmb2_6

tmb1_15

tmb5_14

tmb6_20

X3D

ZPack125

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb7_22
tmb7_18

tmb7_11
tmb7_15

tmb2_23

tmb3_16

tmb2_16

ccb_data_6

X1D

ZPack125

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb2_0

tmb7_8

tmb6_19

tmb2_20

tmb6_12

tmb3_14

tmb9_19

tmb5_30

tmb7_26

tmb2_12

tmb5_31

tmb6_13

tmb1_9

tmb8_22

Clock_Enable

tmb2_31

CLK+

tmb3_0

winner_9

tmb9_10

tmb9_18

tmb9_0

tmb6_5

mpc_reserved_0

tmb8_19

tmb1_8

tmb3_21

winner_5

tmb7_31

tmb8_11

tmb6_21

tmb4_31

tmb4_3

tmb8_5

tmb4_0

ccb_data_strobe

tmb9_28

X1A

ZPack125

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb4_16

tmb6_6

tmb5_18

tmb6_30

tmb5_10

tmb3_31

tmb8_8

tmb8_20

tmb4_22

tmb7_10

tmb2_1

tmb7_28

tmb1_24

tmb5_4

tmb9_15

tmb2_9

tmb8_30

tmb7_14

tmb1_7

tmb6_1

tmb6_15

tmb8_2

tmb4_12

ccb_bc0

tmb1_16

tmb2_17

tmb9_11

tmb5_22
tmb5_16

tmb6_22

tmb1_26

tmb4_26

tmb9_29

tmb8_1

winner_8winner_2

tmb4_5

tmb2_13

tmb3_30

tmb8_12

tmb2_27

tmb2_5

tmb1_30

tmb8_4 tmb8_6

tmb1_3

tmb6_31

tmb2_10

tmb2_18

tmb1_29

tmb5_24

tmb3_26

tmb4_10

tmb9_22

tmb5_20

tmb9_21

tmb1_12

tmb3_9

tmb7_27

X1C

ZPack125

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb6_2

tmb9_3

tmb4_9

ccb_data_0

tmb3_13

X4D

ZPack125

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb6_16

ccb_l1accept

tmb5_21

tmb8_23

tmb9_5

tmb6_4

ccb_reserved_2

tmb3_3

tmb5_23

tmb9_31

tmb8_18

tmb3_23

CLK80-MPC

tmb2_28

mpc_reserved_2

tmb7_3

ccb_cmd_strobe

tmb4_15

tmb6_9

tmb7_20

tmb8_9

tmb1_21

tmb5_6

winner_7

tmb4_17

tmb2_29

tmb7_9

tmb8_14

X3C
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb2_7

tmb5_13

tmb2_24

tmb9_1

tmb4_4

X2E

ZPack55

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11

1
2
3
4
5
6
7
8
9

10
11

tmb5_19

ccb_cmd_0

tmb5_2

tmb7_13

tmb6_14

tmb9_16

tmb5_29

tmb9_24

winner_3

ccb_cmd_5

tmb4_24

tmb3_11

tmb6_8

tmb1_28

ccb_cmd_3
ccb_bcntres

tmb3_17

tmb4_11

tmb8_25

tmb9_25

tmb7_1

tmb7_30

tmb2_2

tmb1_14

ccb_reserved_3

tmb4_19

tmb3_27

tmb5_15

tmb1_13

tmb5_7

X2B

ZPack55

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11

1
2
3
4
5
6
7
8
9

10
11

tmb5_28

tmb1_23

tmb3_24

X4A

ZPack125

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb9_26

mpc_hard_reset

tmb9_30

tmb3_19

tmb3_7

tmb2_25

ccb_data_3

tmb8_7

tmb3_15

tmb3_6

CLK80+MPC

1.
5V

tmb7_7

tmb5_0

tmb6_17

ccb_data_4

tmb9_6

X4B

ZPack125

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb2_19

tmb4_20

tmb3_18

tmb9_7

winner_6

tmb8_10

tmb5_12

CLK-

tmb2_15

tmb6_25

tmb2_26X2D

ZPack55

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11

1
2
3
4
5
6
7
8
9

10
11

tmb3_5

tmb2_21

tmb3_8

tmb2_14

ccb_data_1

tmb6_23

tmb3_20

tmb4_8

tmb7_6

tmb1_10

ccb_cmd_2

tmb1_6

tmb6_7

tmb9_20

tmb3_1

mpc_cfg_done

tmb8_16

winner_4

X3E

ZPack125

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb4_6

tmb3_25

tmb6_24
tmb6_28

tmb2_3

tmb6_11

ccb_data_2

tmb2_4

ccb_reserved_4

tmb9_14

tmb7_0

ccb_data_7

tmb1_2

ccb_cmd_1

tmb5_26

tmb9_4

tmb8_3

tmb9_9

tmb7_2

tmb4_28

winner_1

ccb_data_5

tmb7_5tmb7_4

tmb9_23

tmb2_22

ccb_cmd_4

tmb6_3

tmb5_17

X2A

ZPack55

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

1
2
3
4
5
6
7
8
9

10
11

tmb1_4

tmb2_8

 34

Table 4: TMB Slot

tmb_21

ccb_data_6

rpc_rxa7

clct_status_3

rpc_rxa3

alct_txa19

X4D

ZPACK-A-154

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11

C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11

15
16
17
18
19
20
21
22
23
24
25

alct_txa14

tmb_20

rpc_rxa27

rpc_txa3

dmb_reserved_out_1

tmb_27

alct_rxa16

rsv_5

tmb_data_0

tmb_data_19

alct_rxa24

alct_rxa10

X3F

ZPACK-A-154

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11

E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

F26

1
2
3
4
5
6
7
8
9

10
11

15
16
17
18
19
20
21
22
23
24
25

26

tmb_6

alct_rxa22

alct_rxa30

rsv_6

tmb_data_25

ccb_data_4

tmb_29

rpc_txa5
rpc_rxa38

alct_adb_pulse_async

tmb_3

alct_txa1

ccb_data_2

tmb_12

rpc_rxa21

ccb_data_7

tmb_reserved_in_1

rpc_rxa5

ccb_data_strobe

tmb_22

rsv_1

X1E

ZPack125

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

X1D

ZPack125

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

reserved_from_dmb_1

clct_status_0

alct_rxa1

tmb_data_26

dmb_l1a_release

dmb_reserved_in_0

tmb_data_28

alct_rxa3

alct_rxa23

tmb_data_9

dmb_cfeb_calibrate_1
dmb_reserved_out_2

clct_status_5

alct_rxa28

rpc_rxa1

rpc_rxa9

rpc_rxa16

fifo_clock

tmb_data_7

alct_txa26

alct_external_trigger

tmb_data_21

alct_txa12

X2D

ZPack55

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11

1
2
3
4
5
6
7
8
9

10
11

clct_status_7

alct_txa7
alct_txa11

tmb_data_15

reserved_to_dmb_1

rpc_rxa20

ccb_cmd_2

tmb_2

winner

tmb_data_18

tmb_31

alct_rxa6
alct_rxa9

rsv_7

alct_rxa0

rpc_rxa30

tmb_1

ccb_l1accept

rsv_4

X4C

ZPACK-A-154

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11

B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11

15
16
17
18
19
20
21
22
23
24
25

rpc_txa2

rpc_rxa11

X2C

ZPack55

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11

1
2
3
4
5
6
7
8
9

10
11

rpc_txa6

alct_status_7

tmb_reserved_out_0

dmb_reserved_out_3

tmb_16

rpc_rxa17

alct_txa15

alct_txa22

alct_txa5

ccb_data_3

tmb_5

tmb_data_27

alct_rxa15

alct_rxa2
alct_rxa5

dmb_reserved_out_4

clct_status_1

tmb_cfg_done

alct_txa31

X3E

ZPACK-A-154

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11

D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11

15
16
17
18
19
20
21
22
23
24
25

reserved_from_dmb_0

rpc_txa4
rpc_rxa39

X1B

ZPack125

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ccb_reserved_3

dmb_request_lct

CLK+

rsv_2

alct_rxa21

rpc_rxa4

alct_txa13

active_feb_4

ccb_evcntres

ddu_special

tmb_19

tmb_25

alct_status_6

alct_txa18

alct_txa9

X2B

ZPack55

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11

1
2
3
4
5
6
7
8
9

10
11

X4E

ZPACK-A-154

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11

D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11

15
16
17
18
19
20
21
22
23
24
25

tmb_data_22

dmb_reserved_in_2

alct_txa8

mpc_in1

tmb_18

tmb_data_2

tmb_0

alct_rxa8

ccb_reserved_2
tmb_hard_reset

ccb_data_5

tmb_data_13

X3B

ZPACK-A-154

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11

15
16
17
18
19
20
21
22
23
24
25

ccb_cmd_1

alct_rxa27

alct_txa29

tmb_reserved_0

reserved_to_dmb_2

tmb_15

X1A

ZPack125

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

X4B

ZPACK-A-154

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11

15
16
17
18
19
20
21
22
23
24
25

tmb_4

alct_txa4

rpc_rxa18

tmb_data_1

tmb_11

tmb_reserved_1

dmb_cfeb_calibrate_2

tmb_data_14

rpc_rxa13

rpc_rxa31

alct_txa20

alct_txa16

alct_status_3

tmb_data_6

rpc_rxa32

tmb_reserved_in_2

tmb_9

alct_rxa25

X2A

ZPack55

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

1
2
3
4
5
6
7
8
9

10
11

tmb_data_17

alct_txa30

tmb_10

alct_txa28

alct_rxa26

alct_adb_pulse_sync

tmb_data_8

X1C

ZPack125

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

3.3V

tmb_l1a_request

ccb_bc0

tmb_23

dmb_cfeb_calibrate_0

Clock_Enable

alct_txa6

rpc_txa1

rpc_rxa12

tmb_data_24

clct_status_6

tmb_data_16

rpc_rxa14

clct_status_2

active_feb_2

tmb_data_3

alct_cfg_done

rpc_rxa25

X2E

ZPack55

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11

1
2
3
4
5
6
7
8
9

10
11

alct_status_2

alct_txa0

ccb_cmd_3

active_feb_flag

rpc_txa0

alct_rxa4

tmb_data_11

alct_status_4

tmb_data_10

alct_rxa20

tmb_reserved_out_1

rpc_rxa35

alct_rxa14 alct_rxa11

tmb_reserved_in_4

alct_txa10

alct_hard_reset

last_frame

alct_status_8

ccb_reserved_4

X4A

ZPACK-A-154

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11

Z15
Z16
Z17
Z18
Z19
Z20
Z21
Z22
Z23
Z24
Z25

1
2
3
4
5
6
7
8
9

10
11

15
16
17
18
19
20
21
22
23
24
25

alct_txa2

rpc_rxa22

X4G

ZPACK-A-154

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11

F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25

1
2
3
4
5
6
7
8
9

10
11

15
16
17
18
19
20
21
22
23
24
25

ccb_cmd_strobe
ccb_cmd_5

alct_txa21

tmb_8

rpc_rxa6

rpc_rxa28

alct_txa25

reserved_from_dmb_2

tmb_l1a_release

tmb_data_23

rpc_rxa34
rpc_rxa0

rpc_rxa37

X3A

ZPACK-A-154

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11

Z15
Z16
Z17
Z18
Z19
Z20
Z21
Z22
Z23
Z24
Z25

1
2
3
4
5
6
7
8
9

10
11

15
16
17
18
19
20
21
22
23
24
25

tmb_28

alct_txa23

first_frame

tmb_reserved_out_2

alct_txa24

tmb_data_5

rpc_rxa19

rsv_3

alct_txa17

rpc_rxa10

rsv_0

write_enable

3.3V

ccb_reserved_1

alct_txa27

rpc_rxa15

X3G

ZPACK-A-154

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11

F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25

1
2
3
4
5
6
7
8
9

10
11

15
16
17
18
19
20
21
22
23
24
25

tmb_30

tmb_17

rpc_txa7

tmb_data_12

tmb_data_29

alct_rxa31

active_feb_1

dmb_reserved_out_0

ccb_reserved_0

alct_rxa13

alct_rxa19

X3D

ZPACK-A-154

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11

C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11

15
16
17
18
19
20
21
22
23
24
25

ccb_data_0

active_feb_0

alct_rxa17

1.5V

alct_rxa18

reserved_to_dmb_0

alct_txa3

tmb_26

alct_status_0

dmb_reserved_in_1

rpc_rxa8

X4F

ZPACK-A-154

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11

E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

F26

1
2
3
4
5
6
7
8
9

10
11

15
16
17
18
19
20
21
22
23
24
25

26

tmb_reserved_in_0

tmb_14

rpc_rxa33

rpc_rxa26

ccb_cmd_4

CLK-

active_feb_3

tmb_24

rpc_rxa24

ccb_cmd_0

clct_external_trigger

rpc_rxa2

tmb_7

tmb_data_4

alct_status_5
clct_status_8

ccb_bcntres

alct_rxa29

tmb_data_20

tmb_13

tmb_reserved_in_3

alct_rxa12

alct_status_1

X3C

ZPACK-A-154

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11

B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11

15
16
17
18
19
20
21
22
23
24
25

rpc_rxa29

ccb_data_1

clct_status_4

alct_rxa7

rpc_rxa36

rpc_rxa23

 35

Table 5: DMB Slot

dmb_hard_reset

rsv_4

tmb_data_20

active_feb_0

tmb_data_0

ccb_data_3

tmb_l1a_request

tmb_reserved_out_1

dmb_reserved_out_2 dmb_reserved_out_3

reserved_to_dmb_0

tmb_data_21

X1A

ZPack125

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ccb_cmd_2

dmb_reserved_in_1
dmb_reserved_out_1

CLK+

tmb_data_27

dmb_reserved_1

alct_adb_pulse_sync

alct_status_2

ccb_data_strobe

tmb_data_15

tmb_data_25

tmb_reserved_in_1

X2D

ZPack55

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11

1
2
3
4
5
6
7
8
9

10
11

clct_status_6

ccb_data_7

reserved_from_dmb_0

active_feb_1

alct_status_5
clct_status_8

clct_status_2

X2B

ZPack55

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11

1
2
3
4
5
6
7
8
9

10
11

reserved_to_dmb_1
reserved_to_dmb_2

tmb_data_2

X1E

ZPack125

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

dmb_request_lct

tmb_data_13

dmb_reserved_out_4

tmb_data_17

reserved_from_dmb_1

tmb_data_19

alct_status_7

active_feb_flag

dmb_reserved_in_0

ccb_cmd_3

tmb_data_10

clct_status_7

tmb_data_9

ccb_bcntres

X2E

ZPack55

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11

1
2
3
4
5
6
7
8
9

10
11

dmb_cfg_done_

clct_status_4

dmb_cfeb_calibrate_1

alct_status_3

Clock_Enable

ccb_cmd_strobe

tmb_data_24

tmb_reserved_in_4

ccb_evcntres

ccb_data_1

dmb_reserved_2

tmb_data_4

rsv_5

alct_status_8

ccb_reserved_3

clct_external_trigger

tmb_data_26

clct_status_5

tmb_data_22

tmb_l1a_release

dmb_reserved_out_0

tmb_data_5

ccb_data_0

dmb_cfeb_calibrate_0 dmb_l1a_release

tmb_data_14

tmb_data_28

ccb_cmd_0

tmb_data_7

last_frame

rsv_0 rsv_1

active_feb_3

X1C

ZPack125

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

tmb_reserved_in_2

ccb_reserved_2

tmb_data_6

1.5V

clct_status_1

tmb_reserved_out_0

tmb_data_11

fifo_clock

ccb_data_5

alct_status_1
alct_status_4

active_feb_2

tmb_data_16

ccb_cmd_5

tmb_data_18

dmb_cfeb_calibrate_2

CLK-
ccb_reserved_4

tmb_data_3tmb_data_1

rsv_3

X1D

ZPack125

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

alct_status_0

tmb_data_8

ccb_reserved_1

dmb_reserved_0

first_frame

tmb_reserved_in_0

rsv_2
rsv_6

active_feb_4

tmb_reserved_out_2

ccb_data_4

ccb_bc0

tmb_data_29

clct_status_3

reserved_from_dmb_2

ddu_special

clct_status_0

tmb_data_23

alct_status_6

ccb_cmd_1

alct_adb_pulse_async

ccb_data_2

ccb_cmd_4

ccb_data_6

ccb_l1accept

ccb_reserved_0

tmb_data_12
X2C

ZPack55

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11

1
2
3
4
5
6
7
8
9

10
11

X1B

ZPack125

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

write_enable

dmb_reserved_in_2

rsv_7

alct_external_trigger

X2A

ZPack55

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

1
2
3
4
5
6
7
8
9

10
11

tmb_reserved_in_3

 36

2. Track Finder Backplane

The picture of the CSC Track Finder custom 6U backplane designed at the University
of Florida, Gainesville (revision 2, production version, front view) is shown on Fig.3.
This backplane is located in the Track Finder (TF) crate below commercial 3U
VME64x backplane which utilizes the geographical addressing scheme as described
in Table 6. The TF crate is a customized Wiener 6023 [3] part with the power supply
that provides the +5.0V, +3.3.V and (optionally) +12V and –12V. The Wiener power
supply is connected to 3U VME64x backplane with several wires as specified by
Wiener. Three thick wires for the GND, +5.0V and +3.3V are required for connection
between the VME64x and custom 6U backplanes. An additional custom mezzanine
card (Fig.4) available from the University of Florida should be mounted on custom
backplane to provide +1.5V for the GTLP terminators. Pin assignment of all female
type metric (2 mm) 5- or 7-row Zpack connectors for the CCB, MS, SP, DDU and
MPC slots is shown in Tables 7-11 respectively. Note the MPC slots are implemented
only partially (compare with Table 2). The MPC may only receive the CCB 40MHz
and 80MHz clocks and commands. The main goal of putting the MPC into the TF
crate is to provide a source(s) of data for the SP boards for testing purposes.

Table 6: Geographical Addressing in the TF Crate

VME
Slot

Board Base
Address

VME
Slot

Board Base
Address

VME
Slot

Board Base
Address

1 CC 8 SP3 400000h 15 None 780000h
2 DDU 100000h 9 SP4 480000h 16 SP7 800000h
3 MPC1 180000h 10 SP5 500000h 17 SP8 880000h
4 MPC2 200000h 11 SP6 580000h 18 SP9 900000h
5 MPC3 280000h 12 CCB 600000h 19 SP10 980000h
6 SP1 300000h 13 None 680000h 20 SP11 A00000h
7 SP2 380000h 14 MS 700000h 21 SP12 A80000h

All bussed GTLP signals (full list is given in Table 3B of the CCB Specification [1]) are
terminated on both ends of the TF custom backplane. All 40MHz and 80MHz point-to-point
signals are terminated on receiving boards: 100 Ohm to +1.5V for GTLP, 100 Ohm between
the complementary signals for LVDS (40MHz and 80MHz clocks from the CCB).

 37

Figure 3: Track Finder custom 6U backplane, front view

Figure 4: Track Finder crate, rear view

 38

Table 7: CCB Slot

sp_cfg_done_3

ccb_cmd_1

CLK-SP2
CLK-SP1

X2A

ZPack125

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

CLK+SP7

ms_l1a_request

sp_to_ccb_1

ccb_data_0

mpc_cfg_done_2

CLK-SP4
CLK-SP8

ccb_data_6

CLK+SP10

CLK+SP8

ccb_cmd_4

CLK-SP9

X2B

ZPack125

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

CLK+SP5

CLK80-MPC2

ccb_reserved_4

ccb_reserved_1

ccb_evcntres

ms_hard_reset

ccb_bc0

CLK-MS

ccb_to_mpc_0

ccb_data_7

CLK+SP2

CLK80+MPC1

CLK-SP12
CLK-SP11

X2D

ZPack125

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ccb_data_4

ccb_cmd_5

CLK-MPC3

ccb_cmd_0

CLK-DDU

sp_cfg_done_12

ms_to_ccb_0

sp_cfg_done_9

CLK80-MPC3

CLK+SP11

ccb_to_ms_3

CLK+SP3

ccb_bcntres

ms_cfg_done

mpc_hard_reset

ccb_data_5

mpc_cfg_done_1

sp_cfg_done_7

CLK80+MPC2

X2E

ZPack125

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

CLK-SP10

CLK+SP6

CLK+SP12

sp_cfg_done_10

sp_to_ccb_0

sp_cfg_done_11

Clock_Enable

CLK+SP1

CLK-SP3

sp_cfg_done_8
sp_cfg_done_2

ms_to_ccb_1

sp_cfg_done_5

ccb_data_3

X1E

ZPack125

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

CLK+DDU

CLK+MPC2

ccb_cmd_2

sp_to_ccb_2

sp_hard_reset

sp_l1a_request

CLK80+MPC3

X1D

ZPack125

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

CLK-SP7

ccb_data_1

CLK+SP9

CLK-SP5

mpc_cfg_done_3
sp_cfg_done_1

sp_cfg_done_6

CLK+MPC3

X1A

ZPack125

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ccb_data_2

ccb_reserved_3

CLK+MPC1
CLK-MPC2

CLK+MS

ccb_cmd3

1.5V

ccb_l1accept

X1B

ZPack125

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

CLK-MPC1

ccb_reserved_0

X2C

ZPack125

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ccb_to_ms_2

CLK80-MPC1

X1C

ZPack125

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

CLK-SP6

ccb_reserved_2

sp_cfg_done_4

ccb_data_strobeccb_cmd_strobe

CLK+SP4

ddu_cfg_done

ccb_to_ms_1

 39

Table 8: MS Slot

sp1_23

sp4_29

sp3_30

sp7_19

sp8_16

X5E

ZPack-C-77

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11

1
2
3
4
5
6
7
8
9

10
11

ccb_data_2

sp1_17

sp2_16

ccb_cmd_strobe

sp4_17

sp4_6

sp7_3

X3A

ZPack-B-175

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11
Z12
Z13
Z14
Z15
Z16
Z17
Z18
Z19
Z20
Z21
Z22
Z23
Z24
Z25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp1_25

sp2_31

sp3_21

CLK+MS

sp6_15

sp7_24

sp5_16

sp3_16

sp5_10

sp7_30

sp9_4
sp9_1

sp10_3

sp11_21

ccb_bc0

sp9_24

sp10_29

sp12_9

X1F

ZPack-B-175

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp11_12

X1E

ZPack-B-175

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp12_29

sp3_9

sp9_11

X2D

ZPack-B-175

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp9_25

sp6_20

sp3_14

ms_to_ccb0

sp11_3

sp4_12

ccb_data_5

sp8_19

w10_0

sp8_30

sp7_14

sp3_22

sp1_13

sp12_17

sp4_13

sp4_11

sp12_12

sp11_20

sp3_25

sp4_22

sp1_6

sp6_23

sp3_3

w7_1

sp10_23

sp9_29

sp5_4

sp7_25

sp11_29

sp8_0

X2E

ZPack-B-175

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp12_27

sp6_14

sp3_12

X3G

ZPack-B-175

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp1_18

sp3_7

sp5_14

sp9_19

sp3_6

sp11_31

sp12_24

X2B

ZPack-B-175

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ccb_data_3

ms_to_ccb1

sp5_22

sp4_4

X3F

ZPack-B-175

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp11_13

sp9_2

sp4_5

sp10_1

sp4_31

sp6_31

sp1_3

sp3_11

sp7_13

sp10_27

sp2_25

w10_1

sp1_10

ccb_data_6

sp12_4

sp6_3

sp10_4

sp6_13

sp7_4

w12_1

ccb_l1accept

sp11_0

sp2_24

sp11_1

sp9_15

X2F

ZPack-B-175

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp4_28

sp11_5

sp3_20

sp4_24

sp6_26

sp5_19

sp3_17

sp4_25

sp9_28

sp11_30

sp6_4

sp11_25

sp2_27

sp12_1

sp9_7

X5C

ZPack-C-77

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11

1
2
3
4
5
6
7
8
9

10
11

sp1_8

sp8_24

sp4_14

sp6_17

sp6_10

sp9_13

sp5_20

sp4_30

sp8_23

sp4_19

sp6_24

sp7_8

sp5_12

sp11_9

ms_l1a_req

X4E

ZPack-B-175

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp4_21

w9_1

Clock_Enable

sp4_23

sp4_7

w2_0

sp8_11

w3_0

ccb_cmd_1

sp10_8

sp3_31

sp4_26

sp12_3

sp12_16

sp2_13

sp3_1

X4C

ZPack-B-175

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

X4B

ZPack-B-175

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp8_25

sp5_15

ccb_cmd_3

sp9_12

sp2_15

sp5_25

sp10_11

sp8_9

sp6_22

sp1_24

sp11_15

sp3_5

X3E

ZPack-B-175

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

X4F

ZPack-B-175

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp4_16

sp10_15

sp5_1

w11_1

w8_1

sp3_19

sp1_26

X1A

ZPack-B-175

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11
Z12
Z13
Z14
Z15
Z16
Z17
Z18
Z19
Z20
Z21
Z22
Z23
Z24
Z25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp2_0

sp2_18

sp4_15

sp11_7

w5_0

sp12_14

sp2_3

sp8_20

sp7_28

sp10_26

ccb_to_ms_2

sp5_28

sp12_11

sp11_10

sp6_12

ccb_reserved_1

sp7_23

sp2_23

w1_1

sp6_11

sp10_31

sp2_5

sp3_23

sp7_2

sp1_14

sp9_16

X4G

ZPack-B-175

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp10_20

sp8_21

sp2_7

sp10_10

sp8_27

sp1_1

sp2_4

sp8_2

sp3_10

sp1_31

sp8_26

sp8_3

X2C

ZPack-B-175

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp11_27

sp10_25

sp5_21

sp1_9

sp6_21

X5G

ZPack-C-77

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11

1
2
3
4
5
6
7
8
9

10
11

sp11_16

sp7_0

sp2_1

sp12_19

sp11_24

sp8_10

sp5_31

sp9_26

sp5_30

w7_0

X1C

ZPack-B-175

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp11_23

sp8_31

sp9_31

sp5_0

sp9_8 sp9_9

w6_1

sp5_24

sp2_2

sp10_16

sp3_15

sp5_5

sp12_8

sp3_4

sp9_27

CLK-MS ms_hard_reset

sp4_8

sp3_24

sp2_10

sp10_30

sp2_29

ccb_to_ms_0

sp9_21

w5_1

sp11_2

X5D

ZPack-C-77

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11

1
2
3
4
5
6
7
8
9

10
11

sp4_1

sp7_5

sp11_17

sp3_13

sp10_24

sp8_28

sp1_4

sp9_18

sp7_12

sp7_27

sp10_17

sp11_4

sp10_28

sp10_6

sp6_27

sp9_23

X1B

ZPack-B-175

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

w4_0

ccb_data_strobe

sp12_30

sp6_5

sp6_30

sp2_20

X5A

ZPack-C-77

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11

1
2
3
4
5
6
7
8
9

10
11

X3D

ZPack-B-175

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp10_9

sp1_30

sp6_8

sp2_21

sp8_5

sp2_17

ccb_cmd_5

ccb_to_ms_3

X5B

ZPack-C-77

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

1
2
3
4
5
6
7
8
9

10
11

sp3_2

sp12_7

sp5_2

sp1_27

sp6_16

sp8_29

sp7_15

ccb_cmd_4

sp8_17

X4A

ZPack-B-175

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11
Z12
Z13
Z14
Z15
Z16
Z17
Z18
Z19
Z20
Z21
Z22
Z23
Z24
Z25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp9_30

sp8_4

sp8_15

sp7_17

sp6_9

sp2_30

sp5_26

sp7_26

sp2_26

sp5_13

sp6_18

ccb_data_0

sp6_7

sp1_12

sp9_3

sp8_22

ccb_reserved_2

sp1_21

sp6_1

w11_0

sp8_6

sp10_0

sp6_0

sp5_6

sp12_21

sp7_29

sp3_27

sp9_22

sp9_14

sp2_11

w4_1

ccb_data_7

sp7_21

sp7_10

sp9_6

sp12_28

sp4_9

X1D

ZPack-B-175

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp1_7

sp6_2

sp6_25

ccb_reserved_3

sp12_2

sp8_13

sp7_6

X3B

ZPack-B-175

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp8_14

sp11_28

ccb_reserved_4

sp10_7

sp11_26

sp6_28

sp1_15

sp2_14

ccb_cmd_0

sp1_28

sp8_7

X2G

ZPack-B-175

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp10_2

sp4_20

sp4_27

sp1_0

sp2_19

w8_0

ccb_to_ms_1

sp1_16

sp10_12

sp11_6

sp10_19

sp2_6

sp7_9

sp2_12

X3C

ZPack-B-175

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp1_11

ccb_data_1

sp1_29

sp1_20

sp7_11

sp3_8

sp9_20

sp7_18

sp12_23

sp3_0

sp7_1

sp12_25

sp8_8

sp7_31

sp12_26
sp12_18

sp7_16

sp4_10

sp5_3

sp2_8

sp9_5

sp8_12

sp7_7

sp7_22

sp10_22

sp5_23

sp4_2

ccb_data_4

sp12_13

ccb_cmd_2

sp5_11

sp5_27

w1_0

X4D

ZPack-B-175

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp12_6

ms_cfg_done

ccb_ready

sp11_14

w6_0

sp1_22

sp12_0

sp11_22

sp9_10

sp12_15

ccb_bcntres

sp1_19

sp8_18

w12_0

sp5_29

sp5_17

sp10_5

sp4_3

sp11_8

sp10_18

sp4_18

sp3_29

sp9_17

sp10_21

sp12_22

sp3_28

ccb_evcntres

sp4_0

sp6_19

sp12_10

sp11_18

w3_1

sp1_2

sp9_0

sp3_26

sp2_22

sp11_11

w2_1

sp12_5

sp10_13

X2A

ZPack-B-175

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11
Z12
Z13
Z14
Z15
Z16
Z17
Z18
Z19
Z20
Z21
Z22
Z23
Z24
Z25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

X1G

ZPack-B-175

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sp6_29

sp2_9

X5F

ZPack-C-77

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11

1
2
3
4
5
6
7
8
9

10
11

sp11_19

sp12_20

sp3_18

sp5_7

w9_0

sp5_18

sp6_6

sp12_31

sp7_20

sp10_14

sp5_9

sp2_28

sp8_1

1.5V

sp5_8

sp1_5

 40

Table 9: SP Slot

GND

sp_5

X3A

ZPack-C-77

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11

1
2
3
4
5
6
7
8
9

10
11

X4B

ZPack-B-175

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ccb_reserved_3

X3F

ZPack-C-77

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11

1
2
3
4
5
6
7
8
9

10
11

ccb_clk40

GND

sp_2

GND

X4G

ZPack-B-175

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

X3E

ZPack-C-77

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11

1
2
3
4
5
6
7
8
9

10
11

3.3V

sp_22

GND

sp_3

sp_15

X2B

ZPack-C-77

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

1
2
3
4
5
6
7
8
9

10
11

sp_l1a_req

ccb_data_0

X1G

ZPack-C-77

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11

1
2
3
4
5
6
7
8
9

10
11

ccb_l1reset

GND

3.3V

sp_1

ccb_locked

sp_hard_reset

GND

X2C

ZPack-C-77

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11

1
2
3
4
5
6
7
8
9

10
11

sp_cfg_done

sp_29

sp_8

sp_23

ccb_bc0

sp_to_ccb_0

sp_14
sp_10

X4C

ZPack-B-175

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

GND
X2E

ZPack-C-77

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11

1
2
3
4
5
6
7
8
9

10
11

GND

1.5V

GND

ccb_cmd_2

winner_0

sp_21

sp_to_ccb_1

ccb_bcntres

CLK+

sp_9

X1B

ZPack-C-77

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

1
2
3
4
5
6
7
8
9

10
11

GND

X3G

ZPack-C-77

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11

1
2
3
4
5
6
7
8
9

10
11

3.3V

ccb_cmd_3
ccb_cmd_5

X2A

ZPack-C-77

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11

1
2
3
4
5
6
7
8
9

10
11

sp_11

ccb_cmd_4

sp_18
sp_25

GND

sp_4

sp_24

X1F

ZPack-C-77

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11

1
2
3
4
5
6
7
8
9

10
11

ccb_evcntres

X2D

ZPack-C-77

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11

1
2
3
4
5
6
7
8
9

10
11

sp_16

X1A

ZPack-C-77

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11

1
2
3
4
5
6
7
8
9

10
11

ccb_data_6

sp_0

sp_27

GND

ccb_data_7

GND
ccb_cmd_0

GND

X1C

ZPack-C-77

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11

1
2
3
4
5
6
7
8
9

10
11

ccb_data_strobe

X1E

ZPack-C-77

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11

1
2
3
4
5
6
7
8
9

10
11

ccb_reserved_2

GND
X2G

ZPack-C-77

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11

1
2
3
4
5
6
7
8
9

10
11

ccb_data_4

GND

sp_7

X1D

ZPack-C-77

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11

1
2
3
4
5
6
7
8
9

10
11

sp_30

sp_to_ccb_2

X4E

ZPack-B-175

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ccb_data_1

sp_31

ccb_data_5

X4F

ZPack-B-175

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

GND

X3D

ZPack-C-77

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11

1
2
3
4
5
6
7
8
9

10
11

3.3V

sp_13

sp_6

ccb_l1acceptccb_cmd_strobe

sp_17

X3B

ZPack-C-77

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

1
2
3
4
5
6
7
8
9

10
11

X3C

ZPack-C-77

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11

1
2
3
4
5
6
7
8
9

10
11

3.3V

ccb_data_3

ccb_ready

sp_26

ccb_cmd_1

GND

ccb_data_2

X2F

ZPack-C-77

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11

1
2
3
4
5
6
7
8
9

10
11

sp_20sp_19

sp_28

X4A

ZPack-B-175

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11
Z12
Z13
Z14
Z15
Z16
Z17
Z18
Z19
Z20
Z21
Z22
Z23
Z24
Z25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

CLK-

GND

GND

GND

X4D

ZPack-B-175

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

GND

winner_1

GND

sp_12

 41

Table 10: DDU Slot

ccb_cmd_0

X1D

ZPack125

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

dmb_hard_reset

ccb_data_strobe

ccb_reserved_4

ccb_data_6

ccb_cmd_1

ccb_reserved_1

ccb_bc0 ccb_l1accept
ccb_bcntres

1.5V

X2C

ZPack55

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11

1
2
3
4
5
6
7
8
9

10
11

CLK+

ccb_cmd_strobe

X2E

ZPack55

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11

1
2
3
4
5
6
7
8
9

10
11

X1E

ZPack125

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ccb_reserved_0

ccb_data_1

Clock_Enable
ccb_cmd_3

ccb_data_2

ccb_evcntres

CLK-

ccb_reserved_2

X1C

ZPack125

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

dmb_cfg_done_
X1B

ZPack125

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ccb_reserved_3

ccb_data_3

ccb_cmd_4

X2B

ZPack55

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

1
2
3
4
5
6
7
8
9

10
11

ccb_data_0
ccb_data_7

X2E

ZPack55

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11

1
2
3
4
5
6
7
8
9

10
11

ccb_cmd_2

ccb_data_4

ccb_cmd_5

X2D

ZPack55

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11

1
2
3
4
5
6
7
8
9

10
11

ccb_data_5

X1F

ZPack125

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Table 11: MPC Slot

ccb_bcntres

ccb_data_1

CLK-

mpc_cfg_done
CLK+80

ccb_data_3

ccb_reserved_3

X1F

ZPack125

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ccb_data_5
ccb_reserved_1

ccb_data_0

CLK-80

ccb_bc0 ccb_data_strobe

ccb_reserved_0

ccb_cmd_1

CLK+ mpc_hard_reset

ccb_data_4

ccb_l1accept

ccb_cmd_3
Clock_Enable ccb_reserved_4

X1E

ZPack125

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ccb_data_6 ccb_data_7

X1B

ZPack125

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ccb_cmd_5ccb_cmd_4

ccb_data_2

ccb_cmd_2

X1D

ZPack125

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ccb_cmd_strobe

ccb_cmd_0

ccb_reserved_2

X1C

ZPack125

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ccb_evcntres

 42

3. VME Backplanes

P1/J1 Pin Assignment
Pin Row Z (2) Row A Row B Row C Row D (2)
1 MPR D00 BBSY* D08 VPC (3)
2 GND D01 BCLR* D09 GND (3)
3 MCLK D02 ACFAIL* D10 +V1
4 GND D03 BG0IN* D11 +V2
5 MSD D04 BG0OUT* D12 RsvU
6 GND D05 BG1IN* D13 -V1
7 MMD D06 BG1OUT* D14 -V2
8 GND D07 BG2IN* D15 RsvU
9 MCTL GND BG2OUT* GND GAP*
10 GND SYSCLK BG3IN* SYSFAIL* GA0*
11 RESP* GND BG3OUT* BERR* GA1*
12 GND DS1* BR0* SYSRESET* +3.3V
13 RsvBus DS0* BR1* LWORD* GA2*
14 GND WRITE* BR2* AM5 +3.3V
15 RsvBus GND BR3* A23 GA3*
16 GND DTACK* AM0 A22 +3.3V
17 RsvBus GND AM1 A21 GA4*
18 GND AS* AM2 A20 +3.3V
19 RsvBus GND AM3 A19 RsvBus
20 GND IACK* GND A18 +3.3V
21 RsvBus IACKIN* SERA (1) A17 RsvBus
22 GND IACKOUT* SERB (1) A16 +3.3V
23 RsvBus AM4 GND A15 RsvBus
24 GND A07 IRQ7* A14 +3.3V
25 RsvBus A06 IRQ6* A13 RsvBus
26 GND A05 IRQ5* A12 +3.3V
27 RsvBus A04 IRQ4* A11 LI/I*
28 GND A03 IRQ3* A10 +3.3V
29 RsvBus A02 IRQ2* A09 LI/O*
30 GND A01 IRQ1* A08 +3.3V
31 RsvBus -12 VDC +5VSTDBY +12 VDC GND (3)
32 GND +5 VDC +5 VDC +5 VDC VPC (3)

(1) Pin(s) redefined under the VME64 specification.
(2) Pin(s) redefined under the VME64x specification
(3) Elongated (mate first, break last) connector contact.

 43

P2/J2 Pin Assignment
Pin Row Z (2) Row A Row B Row C Row D (2)
1 UsrDef UsrDef +5 VDC UsrDef UsrDef (3)
2 GND UsrDef GND UsrDef UsrDef (3)
3 UsrDef UsrDef RETRY* (1) UsrDef UsrDef
4 GND UsrDef A24 UsrDef UsrDef
5 UsrDef UsrDef A25 UsrDef UsrDef
6 GND UsrDef A26 UsrDef UsrDef
7 UsrDef UsrDef A27 UsrDef UsrDef
8 GND UsrDef A28 UsrDef UsrDef
9 UsrDef UsrDef A29 UsrDef UsrDef
10 GND UsrDef A30 UsrDef UsrDef
11 UsrDef UsrDef A31 UsrDef UsrDef
12 GND UsrDef GND UsrDef UsrDef
13 UsrDef UsrDef +5 VDC UsrDef UsrDef
14 GND UsrDef D16 UsrDef UsrDef
15 UsrDef UsrDef D17 UsrDef UsrDef
16 GND UsrDef D18 UsrDef UsrDef
17 UsrDef UsrDef D19 UsrDef UsrDef
18 GND UsrDef D20 UsrDef UsrDef
19 UsrDef UsrDef D21 UsrDef UsrDef
20 GND UsrDef D22 UsrDef UsrDef
21 UsrDef UsrDef D23 UsrDef UsrDef
22 GND UsrDef GND UsrDef UsrDef
23 UsrDef UsrDef D24 UsrDef UsrDef
24 GND UsrDef D25 UsrDef UsrDef
25 UsrDef UsrDef D26 UsrDef UsrDef
26 GND UsrDef D27 UsrDef UsrDef
27 UsrDef UsrDef D28 UsrDef UsrDef
28 GND UsrDef D29 UsrDef UsrDef
29 UsrDef UsrDef D30 UsrDef UsrDef
30 GND UsrDef D31 UsrDef UsrDef
31 UsrDef UsrDef GND UsrDef GND (3)
32 GND UsrDef +5 VDC UsrDef VPC (3)

 (1) Pin(s) redefined under the VME64 specification.
(2) Pin(s) redefined under the VME64x specification
(3) Elongated (mate first, break last) connector contact.

References

[1] CCB2004 Specification. http://bonner-ntserver.rice.edu/cms/CCB2004P_041205.pdf
[2] http://bonner-ntserver.rice.edu/cms/tlc2543.txt
[3] Wiener 9U VME 6023 Crate Series. http://www.wiener-d.com/products/11/2.html

http://bonner-ntserver.rice.edu/cms/CCB2004P_041205.pdf
http://bonner-ntserver.rice.edu/cms/tlc2543.txt
http://www.wiener-d.com/products/11/2.html

	October 13, 2009
	Version 1.4.7

	References
	References
	 LoadFPGAconsole.exe -s14 -j0 -x[SP xml file] [MS svf file]

	References
	History
	Appendix
	1. Peripheral Backplane
	P1/J1 Pin Assignment
	P2/J2 Pin Assignment

